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Alrstract--A simple technique is suggested for constructing approximate relations with wide ranges of 
applicability (the same formula can be employed to describe a variety of qualitatively identical problems 
which differ geometrically, i.e. in the surface shape, flow pattern, etc.). The. technique is based on the 
transition from ordinary dimensionless variables to special asymptotic coordinates. The illustration is made 
by reference to numerous specific problems in the theories of mass and heat transfer and physicoebemical 
hydrodynamics. Comparison of the relations obtained with a number of typical eases, for which exact, 
numerical, approximate and asymptotic results are already available, shows a good accuracy and great 
capabilities of the method. The method can also be used with success in other fields of chemical engineering 

science, mechanics and physics. 

1. DESCRIPTION OF THE METHOD OF 
ASYMPTOTIC ANALOGIES 

SuPPosE there is a certain class of  problems which 
differ only in their geometric characteristics and 
which depend on the dimensionless parameter 
(0 ~< ~ ~< oo). It is also assumed that for some specific 
(simplest) geometry the dependence of the basic quan- 
tity sought, x, on the parameter z is known 

x = f(~) (1) 

where F is a monotonous function. 
Expression (1) will be employed as the basis for 

estimating the values of  x which will correspond to 
the solution of  other problems of  the class considered. 
For  this, equation (1) will be transformed in the fol- 
lowing fashion. 

Let the leading terms in the asymptotic expansions 
of  the quantity x at small and large values of the 
parameter r have the form 

x ~ x 0  f o r ~ 0  (2) 

x.-.*x® for ~ --. oo (3) 

where xo and x® depend on ~ in some known manner: 

x0 = ¢P(t), x® = ~'(¢). (4) 

They can be found from an analysis of equation (1). 
It will be assumed further that the requirement 

~o/@ ~ const, is met. 
Using equations (1) and (4), two relations can be 

written 

x F(z) x~ ~b(" 0 
Xo ¢ (~) '  Xo 0,(~)" (5) 

By expressing the parameter ~ from the second 
equation and substituting it into the first equality (5), 
it is possible to find the explicit form of  the function 
x in terms of the asymptotics x0 and x®. As follows 
from equations (5), for the general case the structure 
of this relation is 

XO 

It is clear that in contrast to the original expression 
(1), equation (6) is unaffected by the technique of 
determining the dimensionless quantity x. Further it 
will be assumed that the variation region of  each of  
the ratios x/xo and x®[xo is identical for all the prob- 
lems of  the class in question. The quantities x/xo and 
x®/xo will be referred to as asymptotic coordinates. 

The asymptotic analogy method is that equation 
(6) is used to approximately calculate analogous 
characteristics for already rather a wide range of prob- 
lems that describe qualitatively identical phenomena 
or processes differing only geometrically. For  this pur- 
pose, having constructed relation (6), with the aid 
of equation (1), for some specific (for instance, the 
simplest) ease, the procedure of  calculating the mag- 
nitude of x for another problem of  the same class is 
reduced to the determination of  its asymptotics (in 
the same limiting eases as in equations (2) and (3)) 
with their subsequent substitution into equation (6). 

It is important to note that the approximate 
relations derived by the above method yield the exact 
asymptotic result in both the limiting cases for T ~ 0 
and ~--, oo. 

It should also be noted that the same ideas based 
on the use of  asymptotic coordinates were employed 
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a characteristic dimension of  particle and 
droplet (radius of  spherical particle) 

C concentration in flow 
C, concentration on phase interface 
C® unperturbed concentration in incident 

flow 
Co concentration at initial time instant 
c dimensionless concentration, 

(c®-c)/c® 
dimensionless concentration, C/C, 
dimensionless concentration, 
( C o -  C)/(Co - C,) 

D diffusion coefficient 
K, surface chemical reaction rate constant 

(W, = K,F, is the surface reaction rate) 
Kv volumetric chemical reaction rate 

constant 
k, dimensional constant of  x-order surface 

a C ~ - t  chemical reaction rate, K, ® /D 
kv dimensionless constant of  first-order 

volumetric chemical reaction rate, 
a2K,/D 

21 cylinder length 
Pe Peclet number, aU/D 
R cylinder radius 
2R~, 2R2, 2R3 lengths ofparallelepiped 

sides 
Re Reynolds number, aU/v 
r, 0, ~ spherical coordinate system fixed with 

respect to particle 
S dimensionless body surface area 

NOMENCLATURE 

S, 
T 

body surface area 
dimensionless temperature, 
(To- T , ) / ( ro-  T,) 

T. temperature 
To temperature at initial time instant 
T, body surface temperature 
( T )  dimensionless mean bulk temperature, 

(I/V) ~o Tdv 
t time 
U characteristic flow velocity 
U® unperturbed velocity of translational 

flow far from particle 
V dimensionless body volume 
V. body volume 
v dimensionless fluid velocity vector 
y dimensionless radial coordinate, r/a. 

Greek symbols 
1/ ratio of dynamic viscosities of droplet 

and surrounding fluid (//ffi 0 
corresponds to gas bubble) 

F body surface 
A Laplace operator 
x order of  surface chemical reaction 
v kinematic viscosity of  fluid 

dimensionless coordinate normal to body 
surface 
dimensionless time (t~/a 2 in heat transfer 
problems and tD/a 2 in mass transfer 
problems) 
thermal diffusivity. 

in refs. [1, 2] to improve approximate two-parametric 
dependent formulae. 

A further comparison of the equations obtained 
by the asymptotic analogy method with a variety of  
specific cases, for which exact, numerical and approxi- 
mate results are already available, shows good accu- 
racy and great capabilities of  the method. This is 
due to the fact that the final functional connection 
(equation (6)) of  the quantity x, which is of  interest 
to us, with its asymptotic remains the same (more 
precisely, varies little) for rather a wide range of ident- 
ical problems, and the specific modifications and geo- 
metric differences (the shape and type of  the interface 
and also the flow pattern at a distance from it) ofthese 
problems are rather completely taken into account by 
the corresponding asymptotic parameters such as xo 
and x~o. In other words, the range of  validity of  the 
final expression (6) appears to be appreciably wider 
than that of  the original relation (1). In this sense it 
can be said that the formulae of type (6) (as opposed 
to the original expression (1)) are more informative. 

It should be noted that the values ofxo and x~o can 
be obtained both theoretically and experimentally. 

In the cases with ¢ /¢  ffi const., the corresponding 
two-term asymptotic expansions of  x for ~--* 0 or 

--, oo can be taken as the variables Xo and x® in 
equations (4). 

Attention is now turned to the power-law depen- 
dence of  asymptoties (4) which are most frequently 
encountered in the mass and heat transfer theory and 
in physicochemical hydrodynamics [2--6] 

Xo = A~(r  --* 0), x® ffi B~(~ ~ oo) (7) 

where A, B and n, m are certain constants; n ~ m. 
In this case the functions entering into equations 

(4) have the form ¢ ffi A~", ~ = Bz'.  Placing these 
formulae into equations (5) yields 

x F(~) x® O 

X0 A~" ' X 0 A 

Elimination of  the parameter z will give the sought 
relation 

Xo = ~  ~ Xo: \ \ a  Xo--/ . (8) 
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Equation (6) can be presented in the equivalent 
form 

x/x~ = h(x~/xo) 

where h(z)= f(z)/z, whilst equation (8) can be 
written as 

x =--1 • A x= . (9) 
xoo B 

It should be noted that, for the power-law form of 
the asymptotics x0 and x~, the four-parametric set of  
the quantities x -- ac'F(bz p) in the ¢-x plane (where 
a, b,/~ > 0 ; ~ >/0 ; Fis the prescribed function) passes 
over into the only curve in the x=/xo-x/xo plane. 

The case of the exponential dependence of the 
asymptotics x~ on the parameter ~ will be considered 
later in Section 10. 

Remark. In some cases the original relationship 
between x and r can be specified in the implicit form 

G(x,'c) = O. (10) 

Under the assumption that the leading terms of the 
expansions of the quantity x for z ~ 0 and ~ --. oe are 
given by equations (4), equation (10) can be rewritten 
as follows : 

G(X ) x~ ~k(z) ~o¢(r) ,z =0 ,  - - =  ( l l )  x0 ~P(O" 

Eliminating the parameter z from the second equa- 
tion (11) and substituting it into the first equation will 
yield the relation between the complexes x/xo and 
X~/Xo. 

For the power-law types of asymptotics (7), the 
sought relation has the form 

( x ( ; x ~ Y  (''-'), ( ;x~l /" ' -" '~  0. (12, G A - -  - -  = 
xo xo/  xo/ / 

This equation will be needed later in Section 8. 
Now the great capabilities of the asymptotic anal- 

ogy method will be demonstrated on the examples 
of the problems of mass and heat transfer and 
physicochemical hydrodynamics. 

2. THERMAL CONDUCTIVITY OF SOLID 
BODIES OF COMPLICATED SHAPE 

Consideration will be given to the internal problems 
of unsteady heat exchange of  differently shaped con- 
vex bodies with the surrounding medium. It will be 
assumed that at the initial time instant t = 0 the body 
temperature is uniform and equal to To, whilst for 
t > 0 the temperature on the body surface F is main- 
tained constant and equal to 7",. In terms of  dimen- 
sionless variables, the temperature distribution within 
the body is described by the following equation and 
initial and boundary conditions : 

dT 
~-7 = AT (13) 

T = 0 ,  T = 0 ;  y~F,  T = I  

To-T,  Zt r 
- -  - - (14)  T = T o _ T ,  z - - ~ ,  Y=a 

where T, is the temperature, ~ the thermal diffusivity, 
a the characteristic body dimension, and r the radius 
v e c t o r  o f  t h e  c o r r e s p o n d i n g  c o o r d i n a t e  s y s t e m .  

Here, attention will be mostly paid to the inves- 
tigation of the mean temperature of the body ( T )  
determined as 

where 

(T) = ~  Tdv (15) 

V= Idv 

is the dimensionless volume of the body. 
To Construct the approximate time dependence of 

the mean body temperature, the asymptotic analogy 
method will be employed. It is convenient that as 
the original simplest use will be made of the one- 
dimensional (with respect to space coordinates) prob- 
lem concerning the heat transfer of  a sphere of radius 
a. The solution of  this problem is well known [7] 
and leads to the following expression for the mean 
temperature : 

6 = 
~ - e x p ( - n  n z). (16) ( T ) = I - ~ - ~  I 1 : 2 

The asymptotics of  equation (16) for short and long 
times have the form 

(T)o=6n-I/2x/z(z~O), ( T ) ® = l ( z ~ o o )  (17) 

and represent a specific case of  equation (7) at 
Xo -= (T)0  and x~ = ( T ) ~  where A = 6n- ~/2, B = 1, 
n = 1/2, m = 0. Substituting these values into equa- 
tion (9) where F -- (T ) ,  relation (16) can be rewritten 
a s  

( T )  6 ~ I 1- n 3 2/'(T>o'~:-] 

08) 

In accordance with the asymptotic analogy method, 
equation (18) will be used for predicting the mean 
temperature of non-spherical bodies. To this end, for 
a body of  prescribed shape the mean temperature 
asymptotics should be first calculated at short and 
long time intervals and thereupon substituted into 
expression (18). 

When ~--* co, the solution to the problem, equa- 
tions (13) and (14), for a finite arbitrarily shaped body 
tends to the limiting value (equal to unity) which is 
determined by the boundary condition on the body 
surface. Setting T =  1 in equation (15), the asymp- 
totics for the mean temperature at large values of ~ 
can be found 
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(T)® ffi I. (19) 

Next, consider the initial stage of the process cor- 
responding to low values of dimensionless time. Equa- 
tion (13) will be integrated over the body volume 
V. Allowing for the identity AT = die (grad T), the 
change-over will be made on the right-hand side of 
the resulting equation obtained from the volumetric 
to surface integral via the Ostrogradskiy--Gauss for- 
mula. This gives 

T r y = -  ~ d r  (20) 

where the coordinate ~ runs inwards normal to the 
body surface. 

At small times the temperature varies mostly in a 
thin zone adjacent to the body surface. In this region 
the derivatives along the body surface can be neglected 
as compared with the derivatives along the normal. 
Therefore, the temperature distribution for ~---, 0 is 
governed by the following equation with initial and 
boundary conditions: 

dT ~2T 
- ~ = ~ T ;  z=O,  Tffi0; {ffiO, T = I  (21) 

where ~ = 0 corresponds to the body surface. 
The solution of problem (21) is expressed in terms 

of the complementary error function 

T =  Erfc ( ~ ) .  (22, 

By differentiating this equation with respect to 
and setting ~ ffi 0, the local heat flux on the body 
surface can be found for ~ --, 0 

( d T ~  1 (23) = 

Substituting equation (23) into equality (20) and 
integrating gives 

f~ 1 S (24) T dv = x/ (nQ 

where S is the dimensionless body surface area. 
Now, both sides of equation (24) will be integrated 

over ~ from 0 to z. In view of the initial condition in 
(14), the sought asymptotic expression for the mean 
temperature can be obtained with ~ ~ 0 

sj( ) 
(T>o -- 2 p n " (25) 

Placing equations (19) and (25) into equation (18) 
will yield the approximate time dependence of the 
mean temperature of an arbitrarily shaped body 

6 Qo 1 /" /~2n2S2  "~ 

) 
This expression can be rewritten as 

6 g l { 2s .xt  
< T) = I - ~-~ 2., ~ exp l -  ' 6  n -FT-] (26) 

'~ n -  I " \ . i  v ,  / 

where S, and I/", are the dimensional surface area and 
volume of the body. 

For practical computations, it is expedient to use, 
instead of an infinite series, the simpler equation 

<T) = (! -e-"27'~)1/2-1-0.6(e-|'5~--e-i.io,) 

S.~t  
to= V, 2 (27) 

the maximum difference of which from equation (26) 
is less than 2%. 

Next, approximate relation (26) will be contrasted 
with the known accurate results obtained for heat 
transfer of non-spherical bodies. 

First, a parallelepiped with the sides 2R~, 2R2 and 
2R3 will be considered. The solution for the cor- 
responding three-dimensional problem, equations 
(13) and (14), is constructed by separating the vari- 
ables. It leads to the following equation for the mean 
temperature [7] : 

<r>=1- 

oc oo oo l 
x-.-~ x-.~ x-., 

X n~'~l m'~. i k_'~l (2n--1)2(2m - 1)2(2k - l) 2 

n2F(En__-l)2 (Era-l)  2 
× e x p - 4 L  R, + R-----T-- 

-k (2kR21)2"lZ/}. (28) 

Taking into account that the parallelepiped surface 
area and volume are determined, respectively, as 
S. = 8(R,R2+RIRs+R2R3) and V. ffi 8RIR2R3 
expression (28) can be written in the form 

/2._lT+(2m_ly+(2k_ly 
n2\ R, / \ R2 / \ R, / 

xexp 4 ( l  1 l )  z 

S. Zt l x ~ - .  j .  (29) 

Table 1 (calculations were performed by L. Yu. 
Yerokhin) presents the results of comparison between 
the approximate (26) and exact (29) mean tem- 
peratures of the parallelepiped at six different values 
of R,, Rz, R3. It is seen that the maximum error 
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Table 1. Comparison of the exact and appropriate values of the meati temperature ( T )  of differently shaped bodies 

Dimensionless time, S~,xt/V[ 0.05 0.1 0.2 0.3 0.5 1.0 1.5 2.0 

Sphere, formula (26) 0.236 0.323 0.438 0.518 0 . 6 3 1  0.795 0.882 0.932 
Approximate formula (27) 0.237 0.324 0.437 0.514 0.623 0.782 0.870 0.923 

Parallelepiped, formula (29) ; E~ = R~/R I 
E: = I, E3 = 0.25 0.237 0.326 0.443 0.527 0.647 0 . 8 2 1  0.907 0.951 
E2 = I, E3 = 0.5 0.233 0.318 0.429 0.506 0.615 0.774 0.862 0.915 
E., = 1, E3 = 1 0.232 0.316 0.425 0.499 0.604 0.757 0.843 0.897 
E2 = 1, E3 = 2 0.232 0.318 0.427 0.503 0.610 0.767 0.854 0.920 
E2 = 1, E3 = 4 0.234 0.320 0.432 0.510 0.620 0.782 0 . 8 7 1  0.952 
E2 = 2, E3 = 4 0.234 0 . 3 2 1  0.435 0.514 0.628 0.794 0.882 0.932 

Cylinder, formula (31) ; E = R/l 
E = 0.25 0.236 0.325 0.440 0.522 0.638 0.807 0.894 0.942 
E = 0.5 0.234 0 . 3 2 1  0.434 0.513 0.624 0.787 0.875 0.926 
E =  1 0.233 0.319 0.429 0.506 0.613 0.770 0.857 0.910 
E = 2 0.234 0.320 0 . 4 3 1  0.509 0.619 0.780 0.868 0.920 
E = 4 0.237 0.326 0.444 0.528 0.649 0.823 0.909 0.952 

of equations (26) and (27) for 0.25 ~< R3/R , <<, 4.0, 
R2/R , -- 1 is as much as about  5%. 

Now consider the heat transfer of  a finite cylinder. 
Let the cylinder radius be R and the length 21. The 
solution of the problem, equations (13) and (14), leads 
in this case to the following expression for the mean 
temperature [7] : 

32 00 £ 1 
L : . - -  . - I , . - t  I t ,  l, z m -  1): 

×exp { _ F # •  n2(2rn-- 1) 2-] 
Lm (30) 

where p. are the roots of the zero kind Bessel function : 
J0(#.) = 0 (the values of the first 60 roots of/~. can 
be found in ref. [8]). 

Equation (30) can be rewritten as 

32 ~ ~ 1 <r>=l- EZ 
n-- Ira= l lt. t ":m- I) 2 

41, . l t :+n2R2(2m_l)  2 S2,Xt~ 
xexp - 4(R+21)2 V2 * j (31) 

where S ,  = 2~R(R+21) is the cylinder surface area 
and V, = 2nR21 the cylinder volume. 

The computational  results obtained for different 
values of the cylinder characteristic dimensions using 
exact (31) and approximate (26) relations are listed in 
Table 1. It is seen that the maximum error of equation 
(26) for 0.25 ~< R/l <~ 4.0 amounts  to about  3.5%. 

3. MASS AND HEAT EXCHANGE OF AN 
ARBITRARILY SHAPED PARTICLE WITH A 

TRANSLATIONAL STOKES FLOW 

Interest will be centred on a solid particle mass 
and heat transfer with a laminar translational viscous 
incompressible liquid flow. It is assumed that con- 
centration far from the particle is constant  and equal 
to C~, and that complete absorption of  the substance 
dissolved in the liquid occurs on the interface. Let the 

particle surface F in the spherical coordinate system 
r, 0, ~p be prescribed by the relation r = r,(O, ~o) where 
r, is the known function of 0 and (p. 

The concentrat ion distribution C in the flow is rep- 
resented by the convective mass transfer equation and 
the boundary conditions 

Pe (v" V)c = Ac (32) 

y=y,(O,~p),  c = l ;  y ~ o o ,  c ~ O  (33) 

where c = (C~-C) /C~o,  Pe = aU~/D,  y = r/a, 
y, = rs/a, Uoo is the liquid velocity at a distance from 
the particle, D the diffusion coefficient, a the charac- 
teristic particle size (which is usually represented by 
the radius of  the equivalent volume sphere) and Pe the 
Peclet number.  The distribution of  the liquid velocity v 
is assumed to be known from the solution of the 
corresponding hydrodynamic problem concerning the 
flow around a particle. 

The basic quanti ty of practical interest is the mean 
Sherwood number  which is calculated from 

S h = s ,  I = -  dF, S =  dF. (34) 

For spherical particles it is possible, in lieu of equa- 
tions (34), to write 

1 fo~fo2" (c3c)y Sh 4re ay , i 
= - - -  sin 0 - -  d~o d0. (35) 

Now, with the use of  the method suggested, the 
approximate equation for calculating the Sherwood 
number  per arbitrarily shaped solid particle in the 
translational Stokes flow is derived. This kind of flow 
complies with the limiting case Re ~ 0; Re = aU~/v 
is the Reynolds number  and v the kinematic viscosity 
coeffÉcient. 

First the simplest problem of  the mass transfer of  
a spherical particle will be considered which cor- 
responds to the constant  value y, = 1 in the first 
boundary condit ion (33). (The liquid velocity field is 
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well known in this case [2-6].) For predicting the 
mean Sherwood number per spherical particle, it is 
convenient to employ the approximate relation [5] 

Sh = 0.5+ (0.125+0.243Pe) t/3. (36) 

This equation differs from the available data [5, 6, 
9, 10] by about 2% over the entire range of Peclet 
numbers. 

Now equation (36) will be transformed following 
the technique given in Section 1. For this, account will 
be taken of the fact that the asymptotics of Sh at small 
and large Pe have the form 

Sho = 1 (Pc --* O) ; Sh,: = 0.624Pe ~/3 (Pc ~ oo). 

(37) 

Equations (37) coincide with equations (7) accurate 
to the evident translation into the new notations x 
Sh, r--* P e a t  A = l;  B = O . 6 2 4 ; n = O ; m = 1 / 3 .  By 
substituting these values into equation (8), the sought 
relation is obtained 

Sh = 0.5Sho+(O.125Sh3o+Sh~) '/3. (38) 

This equation can be used to predict the mean Sher- 
wood number per non-spherical particle in the trans- 
lational Stokes flow. As the auxiliary quantities Sho 
and Sir,., the leading terms of the mean Sherwood 
number asymptotic expansions should be selected at 
small and large Peclet numbers, respectively. Some 
specific expressions for Sho and Sh=o obtained theo- 
retically and experimentally for particles of various 
shapes are given in refs. [4, 5]. In the particular case 
of an ellipsoid of revolution with the axis running 
along the flow the substitution of the corresponding 
values of  Sho and Sh~ into equation (38) yields the 
empirical equation suggested in ref. [5]. 

In ref. [10], the approximate problem of mass ex- 
change between an eilipsoidal particle and the trans- 
lational Stokes flow was investigated by the finite- 
difference numerical method. Two cases were 
analysed--when the length of the particle semiaxis 
oriented along the flow was five times larger and five 
times smaller than that oriented transverse to the flow. 
It follows from the results of  numerical solution [10] 
and of comparative analysis [5] that the maximum 
error of equation (38) for an ellipsoidal particle in the 
above cases does not exceed 10%. 

4. MASS AND HEAT EXCHANGE OF A 
SPHERICAL PARTICLE WITH A 

TRANSLATIONAL FLOW AT INTERMEDIATE 
REYNOLDS NUMBERS 

It will be shown that equation (38) can also be 
used with success for predicting the mean Sherwood 
number per particle at intermediate Reynolds 
numbers. (Recall that the original relation (36) 
was obtained in the Stokes approximation, i.e. for 
Re --* 0.) Here the asymptotic Sh~ entering into equa- 

tion (38) is proportional to Pe t/3 [4] and depends on 
the Reynolds number 

Sh~ = a(Re) Pe I/3. (39) 

The value of the parameter a at different Re can be 
found by making use of the formula 

Sh = 0.5 +0.527Re°'°77(1 + 2Pc) i/a (40) 

which was suggested in ref. [5] on the basis of pro- 
cessing the results of  numerical solution for the prob- 
lem on convective mass transfer of  a spherical particle 
in the translational flow with 1 ~< Re <~ 200 and 
1 <~ Pe <~ 2000. In the above range of Reynolds and 
Peclet numbers the maximum error of equation (40) 
is about 3%. 

Equating the right-hand sides of equations (39) and 
(40) at Pe = 2000 yields the relation a = a(Re) for 
1 <~ Re <~ 200 in the form 

a(Re)  = 0.04+0.664Re °°77. (41) 

By substituting asymptotics (39), in view of equa- 
tion (41), into equation (38) at Sho = 1, the approxi- 
mate expression for the mean Sherwood number is 
obtained which differs from equation (40) for 
1 <~ Re <~ 200 and 1 ~< Pe <~ 2000 at most at Re = 200 
and Pe = 2000 by less than 6%. The results of  cal- 
culations by equations (38) and (40) at Re = 1 and 
200 are presented in Fig. 1. Emphasis should be placed 
upon the fact that relations (38), (39) and (41) ensure 
a correct result for the limiting case Pe = 0, whereas 
the error of  equation (40) at Re = 200 reaches here 
30%. 

The comparison performed in Sections 3 and 4 
clearly reveals that the region of applicability of equa- 
tion (38) is much wider than that of the original 
relation (36). 

5. DIFFUSION TO A SPHERICAL BUBBLE AT 
DIFFERENT REYNOLDS NUMBERS 

The problem of mass exchange of a spherical bubble 
with a laminar translational flow at different Reynolds 

--- (~) // 

4 // • 

I I I f I 
2 5 I0 20 50 

Pe 
FIG. I. Sherwood number vs Peclet number for a solid 
spherical particle in a translational flow at intermediate 

Reynolds numbers. 
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numbers was investigated numerically in ref. [11]. The 
computational results for the mean Sherwood number 
in the limiting cases of small and large Reynolds num- 
bers are presented in Fig. 2(a). 

Let the equation for the Sherwood number be con- 
structed by the asymptotic analogy method. As in the 
original relation, use will be made of the expression 

Sh = 0.6+ (0.16+0.21Pe)'/2 (42) 

which approximates well the numerical results of  the 
solution for Re ~ O. 

At large Peclet numbers, equation (42) yields the 
asymptotics 

Sh~ = 0.46x/(Pe) (Pe ~ ~ )  (43) 

which coincides with the analytical result obtained for 
the corresponding problem in the diffusional bound- 
ary layer approximation [3]. When Pe--* O, equation 
(42) gives Sho = 1. 

The Peclet number from equation (43) will be ex- 
pressed in terms of Sh= and placed into equation 
(42), thereby resulting in 

Sh = 0.6+ (O.16 + Sh~) '/2. (44) 

This formula can be derived conventionally by setting 
A = 1, B = 0.46, n = 0, m = 1/2 in equations (7) and 
taking into consideration that the form of  the function 
F is dictated by the right-hand side of  relation (42). 
Next the equality Sho = 1 should be used which is 
valid for spherical bubbles at any Re, 

Equation (44) can already be employed for pre- 
dicting the mean Sherwood number per spherical bub- 

( a )  

IO2 --~ = + ' ~  

R e - "  ~ ~ ~ _ _ ~ J ~  " 

Pe 
( b )  

¢~ I01 

.x  , I , = 

Sh**/Sno 

FIG. 2. Mass exchange of a spherical bubble with a trans- 
lational flow at small and large Reynolds numbers : (a) Sher- 
wood number vs Peeler number; (b) Sherwood number vs 
asymptotic coordinate, e e e e e ,  Re --, 0 [l l] ; x x x x x,  
Re --, oo[11] ; , constructed following formula 

(44). 

ble at moderate and large Reynolds numbers. The 
value of  Sh~ corresponding to Pe >> 1 depends in this 
case on the Reynolds number. In particular, when 
Re ~ oo, it should be set in equation (44) [11] that 

Sh~ = (2Pe/rt) "z (45) 

Figure 2(b) presents the results of  comparison of  
approximate relation (44) with the numerical data for 
the limiting cases Re --. 0 and Re .-. oo. It is evident 
that the maximum error amounts to about 6*/0. 

6. UNSTEADY DIFFUSION TO A DROPLET. 
BUBBLE AND SOLID PARTICLES IN 

TRANSLATIONAL AND SHEAR FLOWS 

Attention will be focused on unsteady mass transfer 
to the surface of a solid spherical particle (droplet, 
bubble) of radius a in a developed flow. It is assumed 
that at the initial time instant t = 0 concentration in 
the continuous phase is uniform and equal to Ca,  
whilst when t > 0, a complete absorption of the sub- 
stance dissolved in the liquid proceeds on the particle 
surface. 

In the spherical coordinate system r, 0, <p with the 
origin fixed at the particle centre, the corresponding 
non-stationary problem on distribution of the con- 
centration is represented by the convective diffusion 
equation with the initial and boundary conditions 
which in dimensionless variables have the form 

dc 
~-~ + Pe (v. V)c = Ac (46) 

z = 0 ,  c = 0 ;  y = l , c = l ;  y - - . o o , c - - , O  (47) 

where c = ( C ~ - C ) / C ~ ,  Pe = aU/D, y = r/a, ~ = 
Dt/a 2, Uis the characteristic flow velocity, D the diffu- 
sion coefficient and Pe the Peclet number. The liquid 
velocity field v is assumed to be assigned and stationary. 

For  a spherical bubble the dependence of  the mean 
Sherwood number on time in an axisymmetric linear 
shear Stokes' flow was obtained in ref. [4] in the 
diffusion boundary layer approximation 

Sh = coth (3Pe z)J (48) 

where Pe = a2E/(2D), E is the shear coefficient. 
Following the suggested method, relation (48) can 

be rewritten using asymptotic coordinates. To this 
end, the leading terms of the Sherwood number 
expansions, equation (48), can be found at small and 
large dimensionless times 

Sho \ - ~  / (z "* O) 

Shoo = (z ---, ~ ) .  (49) 

Asymptotics (49) coincide with equation (7) at 
A = n -  v2, B = (3Pe/n)'/2, n = - 1/2, m = 0 accurate 
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to the evident translation into the new notation Sh --, 
x. Substituting these values into formula (9) and tak- 
ing into account that the explicit form of the function 
F is prescribed by expression (48) gives the sought 
relation 

Sh F /Sh  2 \l~/: 
Sh = Lcoth[, o )j . (50) 

Formula (50) can also be derived in a different 
fashion. For this, the quantities T and Pe from equa- 
tions (49) are expressed in terms of the quantities She 
and Sh~ thereby yielding , = 1/(~ Sh2o) and Pe = 

Sh~/3. By substituting these expressions into equa- 
tion (48), relation (50) is obtained. 

Now it will be shown that expression (50) can be 
used with success for an approximate prediction of 
the rate between droplets, particles and bubbles and 
various flows at large Peeler numbers. 

First it should be noted that at low values o f ,  the 
second term on the le•hand side of  equation (46) can 
be neglected and the Laplacian on the right-hand side 
of this equation can be approximately replaced by 
~2c/~),2. The solution of  the corresponding'shortened' 
equation is expressed in terms of the complementary 
error function and leads to the asymptotics for the 
Sherwood number She = (~*)-i/2 which is valid for 
the entire class of  problems under consideration. 
Therefore, instead of equation (50) it is possible to 
write [1] 

Sh 
Sh~ = [coth (~ Sh~ ¢)] ,/z (51) 

where Sh~ ffi Sh~ (Pe) is the Sherwood number for 
the developed diffusional regime. 

Comparison of the approximate formula obtained 
by substituting the corresponding stationary value [3] 

2Pe 1 '/2, aU~ (52) 
- -  l)j Pe = 

into equation (51) with the results of  refs. [12-14] 
shows that in the case of  unsteady mass exchange of 
a spherical droplet with the developed Stokes flow 
(U~ is the liquid velocity at a distance from the 
droplet, ~ the droplet and the surrounding liquid vis- 
cosity ratio) the maximum error of  expressions (51) 
and (52) is less than 1% (se¢ Fig. 3). 

It should be noted that the results of  refs. [12-14] 
obtained for the mean Sherwood number are given as 
a fairly complex integral which cannot be represented 
in a simple analytical form such as equation (51). 

Placing into equation (51) the quantities [3] 

Sh~ -. 0.624Pe I/3, Pe = aU®/D (53) 

results in the approximate formula for predicting the 
Sherwood number in the case of  unsteady mass trans- 
fer to a solid spherical particle in a developed trans- 
lational Stokes flow. The maximum difference 
between expressions (51), (53) and the approximation 

i ~ (51) 

2.2 • • [12-14] 

• C~] 

1.8 

1.4 ~ e  

I'00 0.2 0.4 0.6 08 
ShLT 

FIG. 3. Comparison of approximate formula for the 
Sherwood number (51) with the results obtained for a 
translational flow around a spherical droplet [12-14] and a 

solid particle [5]. 

[5] of the numerical-analytical results [15] for the 
problem of interest comprises less than 2% (Fig. 3). 

Comparison with the solution of the three-dimen- 
sional non-stationary problem on diffusion to a 
spherical droplet in a plane shear flow [16] dem- 
onstrates that the error of formula (51) (where 
Sh~ = 0.615x/(Pe) [4]) does not exceed 1.8%. 

Table 2 provides the outcome of comparison of 
the results of  computation for the mean Sherwood 
number made by formula (51) with the available data 
for different cases of  flow around spherical droplets, 
bubbles and solid particles at large Peclet numbers. 

It should be marked that expression (50) ensures a 
correct asymptotic result at short and long times and 
can be used to estimate the unsteady mass transfer 
rate for non-spherical particles, droplets and bubbles 
when Pe >> 1. It will be shown in Section 9 that for- 
mula (50) is also good for predicting a wide class 
of  more complex non-linear problems of the unsteady 
diffusion boundary layer. 

7. MASS EXCHANGE OF DROPLETS AND 
PARTICLES WITH FLOW IN THE PRESENCE OF 

VOLUMETRIC CHEMICAL REACTION 

Consideration will be given to steady convective 
mass exchange of a spherical particle (droplet) of  
radius a with an incompressible liquid in the presence 
of the first-order volumetric chemical reaction. The 
process of  the reagent transfer in the continuous phase 
is described in terms of dimensionless variables by the 
following equation and boundary conditions : 

Pe (v- V)e ffi Ae-kv~ (54) 

y = l , ~ =  I ;  y ~ o o , ~ 0  (55) 

where ~ ffi C/C,, kv = a2K~/D, C, is the particle surface 
concentration, K~ the volumetric chemical reaction 
rate constant (the remaining notation was given pre- 
viously in Section 6). 

For solving the stationary problems on convective 
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Table 2. Maximum error of formula (51) for different flows around spherical particles, droplets and bubbles 

No Type of particles Type of flow Method of solution 

Error of 
formula 
(51) (%) Reference 

1 Droplet, bubble Axisymmetric shear Stokes 
flow 

2 Droplet, bubble Translational Stokes flow 
3 Droplet, bubble Three-dimensional Stokes 

flow 
4 Bubble Laminar translational flow at 

large Reynolds numbers 
5 Bubble Axisymmetric shear flow at 

large Peclet numbers, ref. [17] 
6 Droplet, bubble Flow induced by electric field 
7 Particle Translational flow of ideal 

(inviscid) liquid 
8 Solid particle Translational Stokes flow 

9 Solid particle Translational Stokes flow 

Analytical, DBLAt 0 0 [4] 

Analytical, DBLA 0.7 [12-14] 
Analytical, DBLA 1.8 [16] 

Analytical, DBLA 0.7 [13, 14] 

Analytical, DBLA 0 The present 
study 

Analytical, DBLA 0 [18] 
Analytical, DBLA 0.7 [13, 14] 

Interpolation of 1.4 [5] 
numerical-analytical 
results [15] 

Finite-differential method 4 [6] 
(at Pe -- 500) 

i" DBLA, diffusional boundary-layer approximation. 

mass exchange ofdroplets and particles with the liquid 
in the presence of the first-order volumetric chemical 
reaction it is practical to use the results of solutions for 
the corresponding non-stationary problems without 
volumetric reaction. In fact, upon applying to equa- 
tion (46) and boundary conditions (47) the Laplace-- 
Carson transformation (with the valid parameter kv) 

f0 o = L*c =-- k, exp (-k, ,z)c d~ (56) 

the problem with volumetric chemical reaction, equa- 
tions (54) and (55), is arrived at. 

It follows from equation (56) that the Sherwood 
number Sh corresponding to the solution for the prob- 
lem with the first-order volumetric reaction, equations 
(54) and (55), can be expressed in terms of the auxili- 
ary Sherwood number (found by solving the non- 
stationary problem (46), (47)) as follows : 

Sh = L*Sh. 

A useful estimate will be obtained which will be 
needed for what follows. Let Sh be the mean Sher- 
wood number corresponding to the exact solution of  
the auxiliary problem, equations (46) and (47), and 
Shap the approximate expression for the Sherwood 
number with the error equal to ~, i.e. 

ISh-Sh.pl  <~ ~. (57) 

By applying the Laplace-Carson transformation, 
with allowance for relation (57), to the difference 
S h -  Sh,p, the following inequality is obtained: 

Sh-Shap = L*(Sh-Shap) <~ 8L*I -- 

where Sh and Sh,p are the exact and appropriate 
values of the Sherwood number corresponding to the 
solution for the non-stationary problem with the first- 
order volumetric chemical reaction, equations (54) 
and (55). In much the same way it is found that 

Sh-Shap <~ ~. Therefore, the following inequality is 
valid : 

I S h - S h . p l  <<. ~. (58) 

The estimate (58) shows that, having obtained a 
sufficiently good approximate relation for the auxili- 
ary Sherwood number in the non-stationary problem 
by the Laplace--Carson transformation, it is possible 
to get a satisfactory relation (of the same accuracy) for 
the mean Sherwood number in the stationary problem 
with the first-order volumetric chemical reaction. 

With the aforegoing considered, use will now be 
made of the results obtained in Section 6 which treated 
the non-stationary diffusion boundary layer 
problems. Expression (51) will be employed as the 
auxiliary mean Sherwood number. 

Applying the Laplace-Carson transformation to 
equation (51) gives the approximate solution for a 
number of  corresponding stationary problems, equa- 
tions (54) and (55), with the first-order volumetric 
chemical reaction [19]: 

(59) 

where the function • is assigned by the integral 

f: O(x) = x exp ( -xp) [co th  (rcp)l I/2 dp. (60) 

In equation (59) the quantity Sho corresponds to 
the mean Sherwood number in the absence of volu- 
metric chemical reaction, i,e. at k, ffi 0. In forming 
expression (59), account was taken of  the equality 
Sh~ = Sho, in which the quantity 

Sh~ = lira Sh 

complies with the developed diffusional regime in the 
non-stationary problem, equations (46) and (47), and 
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~-2 7 

1.4 

k,/Sng 
Fro. 4. Sherwood number vs dimensionless volumetric 
chemical reaction rate constant for an axisymmetric shear 
flow around a spherical droplet: , formula 
(59); , formula (61); x x × x x, data of 

ref. [201. 

Sho = lim Sh 
k ~ O  

gives the mean Sherwood number in problem (54) 
and (55) at k, = 0. 

Relation (59) could also be derived in a different 
way by applying the Laplace--Carson transformation 
to equation (48) with the subsequent calculation of  
the asymptotics Sh for k, --, 0 and k, --, oo with the 
results obtained in Section 1. It should be taken into 
account that for spherical droplets and particles 
S--h® .=. Jkv.  

Approximate relation (59) adequately reflects the 
structure of the dependence of  the Sherwood number 
on the complex k ~ / - ~  at large Peclet numbers (in the 
diffusion boundary layer approximation) and pro- 
vides a correct asymptotic result for k~ ~ 0 and kv 
~ .  Relations (59) and (60) are shown in Fig. 4 by a 
solid line. The dots correspond to the solution for the 
problem of mass exchange of  a spherical droplet with 
the translational Stokes flow obtained [20]. 

It is significant to note that equations (59) and (60) 
for the axisymmetric shear flow around a spherical 
droplet correspond to the exact solution of  the 
diffusion boundary layer equation. The maximum 
error of  expression (59) for some other cases of  mass 
exchange of  spherical droplets, bubbles and solid par- 
ticles with various flows can be evaluated using the 
last but one column of Table 2. In particular, it follows 
from Table 2 that the solution for the three-dimen- 
sional problem of diffusion to a spherical droplet in a 
plane shear flow leads to the relation for the mean 
Sherwood number which differs from equations (59) 
and (60) by less than 1.8%. 

For approximate calculations of the Sherwood 
number use can be made of  the simple expression 

S--h = x/k, coth ( x ( k ' )  (61) 

which differs from the more complex equations (59) 
and (60) by less than 2%. Relation (61) is depicted in 
Fig. 4 by a dashed line. 

The results obtained show that relations (59) and 

(61) can be used with success to predict approximately 
the Sherwood number in the problems concerning 
mass exchange of  spherical droplets, particles and 
bubbles with various flows in the presence of  the first- 
order volumetric chemical reaction at large Peclet 
numbers. (Recall that the parameter Sho corresponds 
to the Sherwood number in similar more simple prob- 
lems without volumetric reaction at kv = 0.) The Sher- 
wood number for non-spherical droplets and particles 
can be computed by equations (59) and (61) in which 
the parameter kv should be replaced by S'h~. 

8. MASS EXCHANGE OF PARTICLES AND 
DROPLETS WITH A FLOW IN THE 

PRESENCE OF A SURFACE CHEMICAL 
REACTION 

In this section, more complex non-linear problems 
of convective mass exchange between solid particles 
(droplets) and a laminar flow will be investigated. 
Assume that the concentration at a distance from the 
particle is constant and equal to C~ and that on the 
interface there is chemical reaction proceeding at the 
rate W~ = K,F~(C) where K, is the surface reaction 
rate constant, the function F~, which is due to the 
reaction kinetics, meet the requirements F,(0) = 0. 

The corresponding boundary-value problem on the 
concentration distribution in the continuous phase is 
formulated as 

Pe (v. V)c = Ac (62) 

Oc 
y = 1, -~y = -k , f , ( c )  (63) 

y--,  ~ ,  c--, 0. (64) 

Here, the dimensionless functions and parameters are 
associated with the original dimensional quantities by 
the relations 

C~ - C  r aU 
c =  C~ ' Y = a'  --if' 

aK, F,(C~) F,(C) 
k , =  , A(c)= OC® F,(C=) 

and the notation described in Section 6 is adopted. 
In particular, for the x-order reaction F, = C" and 
A --- ( l - c r .  

Generally, it is not difficult to verify that the func- 
tion f ,  possesses the properties 

A ( 1 )  = 0, f , ( 0 )  --- 1. (65) 

Now, an approximate formula will be constructed 
for the mean Sherwood number, with the surface reac- 
tion rate being arbitrarily dependent on concen- 
tration, taking as the point of  departure the most 
simple case of  a quiescent medium which complies 
with Pe = 0 in equation (62). 

At Pe = 0 the solution of equation (62) which sat- 
isfies the condition of  attenuation at infinity, equation 
(64), has the form 
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c = q/y (66) 

where the unknown constant q is related, according 
to equation (35), to the Sherwood number as 

q = Sh. (67) 

Placing expressions (66) and (67) into the boundary 
condition on the particle surface, equation (63) yields 
the algebraic (transcendental) equation for the Sher- 
wood number 

Sh = ksL(Sh).  (68) 

Allowing for properties of equation (65), the lead- 
ing terms of the expansions of Sh will be found from 
equation (68) at small and large values of the par- 
ameter k~ 

S h o = k s ( k s ~ O ) ;  Sh~ = l ( k , - - . ~ ) .  (69) 

After the redesignations Sh--.  x and k,--* z, equa- 
tion (68) can be written as an implicit relation of  the 
type of formula (10): G(x, z) - x-zf~(x)  = 0. There- 
fore, use can be made of equation (12) in which, 
following equations (69), it is to be set that 
A = B = n =  l , m = 0 a n d x b e r e p l a c e d b y S h .  A s a  
result, the following equation is obtained : 

(70) 

In the general case of Pe ~ 0 the treatment ofprob- 
lem (62)-(64) shows that for an arbitrary flow around 
spherical droplets, particles and bubbles the higher- 
order term of the Sherwood number expansion is 
given by the expression Sho = k, when k , - ,  0. The 
aforesaid allows equation (70) to be rewritten in the 
following form : 

Approximate equation (71) can be used with suc- 
cess to predict the mean Sherwood number for an 
arbitrary flow around spherical droplets, particles and 
bubbles with any dependence of the surface reaction 
rate on concentration over the entire range of Peclet 
numbers: 0 ~< Pe < oe. 

In equation (71) the quantity Sh~ = Sh~(Pe)  cor- 
responds to the diffusionai regime of reaction (i.e. to 
the limiting case k, --* m) and should be determined 
by solving linear auxiliary problem (62) and (64) with 
the simplest boundary condition on the interface: 
3,= 1 a n d c =  1. 

It is shown in ref. [41 that equation (71) allows the 
finding of three, for the translational Stokes flow, and 
four, for the arbitrary shear flow, first terms of  the 
Sherwood number asymptotic expansion in small 
Peclet numbers for any kinetics of the surface chemical 
reaction. 

The adequacy of approximate equation (71) at the 
intermediate Peclet numbers Pe = 10, 20, 50 (to these 
values there correspond the Reynolds numbers 

| . O ~  

.,~g° 

0.5 . . . . . .  2 
. . . . . . .  3 

~" 4 

I t I 

h/Sh== 

FIG. 5. Sherwood number vs dimensionless second-order 
surface chemical reaction rate constant. Curve 1 is con- 
structed in accordance with equation (71). Curves 2~, cor- 
respond to a translational flow around a sphere, a circular 

cylinder and a droplet, respectively. 

Re = 10, 20, 1/2) in the case of a translational flow 
around a solid sphere was verified by comparison with 
the numerical results obtained for the corresponding 
problem for the first-order surface chemical reaction. 
It follows from Table 13 in ref. [6] that the error of 
equation (71) does not exceed here 1.5%. 

At large Peclet numbers for the surface reaction of 
the order x = 1/2, 1, 2, the adequacy of equation (71) 
was tested within the entire range of ks by comparing 
its root with numerical results obtained in solving the 
corresponding integral equations for surface con- 
centration (derived in the diffusion boundary layer 
approximation) in the case of translational Stokes 
flow around a sphere, circular cylinder, droplet and 
bubble [4]. The results of comparison for the second- 
order reaction (r = 2) are plotted in Fig. 5 (for 

= 1/2 and 1 equation (71) is more exact than for 
x = 2). Curve I depicted by a solid line corresponds 
to the solution of algebraic equation (71) at 
f , (c)  = ( 1 - c )  2. It is seen that the error is observed 
when 0.5 ~< ks/Sh~ <~ 5.0. It does not exceed 6% for 
a solid sphere (Curve 2), 8% for a circular cylinder 
(Curve 3) and 12% for a spherical droplet (Curve 4). 

It should be noted that in order to calculate the 
mean Sherwood number for particles of irregular 
shape, a simpler equation (70) is to be used. 

9. U N S T E A D Y  M A S S  T R A N S F E R  BETWEEN 
D R O P L E T S  ( B U B B L E S )  A N D  F L O W  W I T H  A N  

A R B I T R A R Y  D E P E N D E N C E  OF THE 
D I F F U S I O N  C O E F F I C I E N T  O N  C O N C E N T R A T I O N  

The analysis is carried out of axisymmetric prob- 
lems concerning unsteady diffusion to droplets and 
bubbles at large Peclet numbers with regard for the 
concentrational dependence of the diffusion 
coefficient : D --- D(C).  It is assumed that at the initial 
time instant the concentration in the surrounding 
liquid is uniform and equal to Ca, whereas on the 
interface there occurs a complete adsorption of the 
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admixture when t > 0. Two situations will be analysed 
simultaneously: 

(1) any steady flow, an arbitrarily shaped droplet 
(bubble), 

(2) any unsteady flow, a spherical droplet (bubble). 

Use will be made of the ~, t/, ). orthogonal coor- 
dinate system fixed with respect to the droplet surface 
where ~ is directed normal to the surface and ,/ is 
running along the surface. Without loss of  generality 
it is assumed that the quantity ~ = 0 corresponds to 
the droplet surface and the first component of  the 
metric tensor is equal to unity at ~ = 0. 

In the diffusion boundary layer approximation the 
corresponding non-linear non-stationary problem has 
the form [21] 

+ ~ / g \ e l  Otl &l 3~] ~ D ( c ) ~  (72) 

z=O,c=O; ~=O,c=l; ~oo, c-+0 (73) 

where c - - ( C = - C ) I C ® ,  T = tD(C®)/a 2, Pe = aU/ 
D(C,A, l~(c) = D(C)/D(C~), a is the characteristic 
droplet (bubble) size, U the characteristic flow velo- 
city. Equation (72) also involves the dimensionless 
quantities 

= ~iq(z, t/), g = gCr/) (74) 

which corresponds to the leading terms of the expan- 
sions of the stream function and of the third metric 
tensor invariant at a droplet surface when ~ ~ 0. To 
different flows and droplet shapes there correspond 
different functions fl and g [4]. 

The solution to the problem (72)-(74) is sought in 
the self-similar form [21] 

c = c , ~ = ~(~,rl). (75) 

Substituting expression (75) into equations (72)- 
(74) indicates that the unknown function 6 = 6(z, tl) 
should satisfy the first-order linear partial differential 
equation 

~6 Pe i~ ~ Pe a~ 
0---,~- + ~--~ ¢~ +2~---~ N 6  = 2 (76) 

under the initial condition ~ = 0 at ~ -- 0. The con- 
centration profile c = c(z) is obtained by solving the 
second-order non-linear ordinary ~ differential equa- 
tion 

i~(C) d z l  ~z = o 

z = 0 ,  c = l ;  z~oo,  c ~ 0 .  (77) 

Differentiating equation (75) with respect to 
results in the expression for a local diffusional flux on 
the droplet surface 

j = -  /~(c) = -  /~(c) ~ z -0 - o" (78) 

For the mean Sherwood number corresponding to 
the solution of non-linear non-stationary problem 
(72)-(74) the designation Sh(i~) will be used. Taking 
into consideration that the solutions of  equations (76) 
and (77) are independent, equation (78) will be inte- 
grated over the droplet surface. This results in the 
equality 

Sh(l~) = ~,(/5)Sh(l). (79) 

Here, Sh(l) is the auxiliary Sherwood number cor- 
responding to linear problem (72)-(74) at the constant 
diffusion coefficient /~ = 1 and a(/5) is the 'non- 
linearity coefficient' defined by the formula 

_ ~/~ de 
• (/~) = ~-~ [/~(c) ~z]~. 0 (80) 

where c = c(z) is the solution of equation (77) when 
/~ffi 1 , ~ =  1. 

It follows from the results of  ref. [21] that relation 
(79) can be extended to the analogous three-dimen- 
sional problem of the unsteady diffusion boundary 
layer. It is also suitable for particles immersed in an 
inviscid flow (an ideal liquid, a filtrational flow). 

Passing in equation (79) to the limit when ~ -+ 0 and 
--+ oo, the leading terms of the asymptotic expansions 

of  the Sherwood number will be found. Allowing fur- 
ther for the fact that the coefficient • is time-inde- 
pendent, two relations are obtained 

Sh(~) Sh(l) Sh®(Z)) Sh~(l) 
Sho(~) =ShoO) '  Sho(i~) = ShoO) (81) 

which are valid for any concentrational dependence 
of the diffusion coefficient. 

The right-hand sides of  equalities (81) do not 
involve the function /~. Therefore, while for linear 
problem (72)-(74) a t /~  = 1 the relationship between 
the asymptotics Sho =- Sh0(1) and Sh~ - S h ~ ( l )  is 
established in the form of equation (6), for non-linear 
problem (72)-(74) a similar formula is valid 

Sh(~) ~[Sh~(~)~ 
Sho( ) = (82) 

where the function f remains the same for any relation 
Li = t i (c ) .  

The aforegning means that in the case of axisym- 
metric shear Stokes flow around a spherical droplet 
expression (50) can be employed to calculate the mean 
Sherwood number with an arbitrary concentrational 
dependence of the diffusion coefficient. It follows from 
the results obtained in Section 6 that equation (50) is 
also appropriate for an approximate description of 
other non-linear non-stationary problems of mass 
exchange of droplets and bubbles with a flow indi- 
cated in Table 2 under Nos. 1-7. 
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10. DESCRIPTION OF THE METHOD FOR THE 
ASYMPTOTICS OF AN EXPONENTIAL 

FORM 

The situation will now be considered in which the 
principal terms of the asymptotic expansions of  
relation (1) have the form 

x0 = ax'(~ --, 0), x= = b exp (-~/z) (3 --* oo) (83) 

where - 1  < ct ~< 0,), > 0. 
In relations (1) and (83) it is convenient to convert 

from the quantity T to the new independent variable 
z following the formula 

z = exp (Tz)-  1. (84) 

Here, initial relation (1) takes on the form 

,~=/r(z),  w h e r e F ( z ) = F ( ~ l n ( z + l ) ) .  (85) 

Here and hereafter, all the quantities written as 
functions of  the variable z, equation (84), will be 
denoted by an overbar. 

In view of the limiting relations 

~ O , z ~ y z ;  ~ --* c¢, z --, exp (~,~) 

which follow equation (84), asymptotics (83) will be 
presented in the form 

.fo=aT-~z" (z~O); .f~=bz-~ (z--*oo). (86) 

It is seen that expressions (86) coincide, accurate to 
evident redesignations, with the previously considered 
equation (7) at A = a 7  -~, B = b ,  n = ~ ,  m = - l .  
Taking into consideration the above and using equa- 
tion (8), relation (85) will be written with the aid of 
asymptotic coordinates (86) as 

x0 a 2o/ 

x F(~ ln V ftr: 2o ~ t/(~+ ') +,]) (87) 

Now equation (87) can be employed to approxi- 
mately calculate the corresponding values for a variety 
of quantitatively analogous problems. First, for each 
specific problem the principal terms of the type (83) 
expansions are to be determined, next the transition 
to a new variable should be made following equation 
(84) and lastly the asymptotics should be rewritten 
in the form of equation (86) and substituted into 
expression (87). (Recall that it is expedient that the 
initial function F be obtained, as previously, by solv- 
ing one of the simplest problems of the class in ques- 
tion.) 

In the particular case, when for the entire class of  
problems considered the equalities a = 1, and r, = 0 
are satisfied in accordance with xo = 1, equation (87) 
simplifies and takes on the form 

,88, 

To illustrate the foregoing statement, the problems 
on mass exchange of differently shaped bodies, equa- 
tions (13) and (14), will be tackled once more. In 
lieu of the mean temperature in equation (15), the 
analogous quantity will be considered 

x = 1 - (T> (89) 

which tends to unity when ~ --, 0; this corresponds to 
the values a = 1, and ct = 0 in equations (83). 

As before, the heat transfer of a sphere will be 
considered. Equations (16) and (89) yield that the 
asymptotics ofx  at large and small times are described 
in this case by equations (83) at 

a = l ,  c t = 0 ;  b=6rc -z ,  7=Tr ' .  

Substituting the quantities into equation (88) with 
allowance for equations (16) and (89) yields the 
sought relation 

6 _~ 1 [6-x®l + )-":  = l ( 9 0 )  

which can already be used to calculate the mass trans- 
fer of non-spherical bodies. 

For a parallelepiped, it will be found from relations 
(28) and (89) that the principal term of the expansion 
o f x  for x --* oo is prescribed by relation (83) in which 

( 8 )  3 ~-~ £ { 1  1 4  1 )  
b =  , 

Therefore, following equations (84) and (86) the 
quantity 2~ can be defined as 

8 3 r n 2 ( l  1 1 1}-' I 0xp + + + 1 -  

(91) 

Placing expression (91) into equation (90) ~ves the 
approximate time dependence of the mean tem- 
perature of the parallelepiped. 

For a finite cylinder, it follows from equations (30) 
and (89) that the asymptotics x~ of x at ~ --+ oo is 
determined by equality (83) in which 

3___~2 ( " ;  + x,. 
b = n2~2, r~ = ~,R2 

With these relations taken into consideration the fol- 
lowing equation can be obtained with the aid of  
expressions (84) and (86) : 

,f~---zt2/z----~ pk~+ X t - - 1  . (92) 

Substituting equation (92) into expression (90) 
yields the approximate formula for the mean tem- 
perature of the finite cylinder, 

Now, the accuracy of the constructed relations will 
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Table 3. Comparison of the exact and approximate values of the mean temperature (T)  of differently shaped bodies 
(exponential approximation) 

Asymptotic coordinate, .~  0.2 0.3 0.5 1.0 2.0 5.0 20.0 

Sphere, formula (90) 0.151 0 . 2 0 3  0 .281  0 . 4 0 2  0 . 5 2 6  0 . 6 7 0  0.823 

Parallelepiped, formula (93) ; E~ ffi R~/R~ (i ffi 2, 3) 
E2 -- 1, E3 ffi 0.25 0.166 0 . 2 2 5  0 . 3 1 2  0 .441  0 . 5 6 5  0 . 7 0 2  0.842 
E2 = 1, E~-- 0.5 0.151 0 . 2 0 3  0 . 2 8 2  0 .403  0 . 5 2 6  0.669 0.821 
Ez = I, E3 -- 1 0.147 0 . 1 9 6  0 .271  0 . 3 8 7  0 . 5 0 9  0 . 6 5 4  0.812 
E2 -- 1, E 3 = 2 0.151 0 . 2 0 2  0 .279  0 .398  0 . 5 2 0  0 . 6 6 4  0.818 
E., -- 1, E~ ffi 4 0.160 0 . 2 1 4  0 . 2 9 4  0 . 4 1 6  0 . 5 3 8  0 . 6 7 9  0.827 
E2 = I, E3 ffi 4 0.159 0 . 2 1 4  0 .297  0 .421  0 . 5 4 5  0 . 6 8 5  0.831 

Cylinder, formula (94) ; E = R/I 
E = 0.25 0.163 0 . 2 1 9  0 .302  0 . 4 2 6  0 . 5 5 0  0 . 6 8 9  0.834 
E ffi 0.5 0.154 0 . 2 0 6  0 . 2 8 6  0 .407  0 .531  0 . 6 7 3  0.824 
E =  1 0.149 0 . 1 9 9  0 . 2 7 5  0 . 3 9 3  0 . 5 1 5  0 . 6 6 0  0.816 
E = 2 0.151 0 . 2 0 3  0 .281  0 . 4 0 2  0 . 5 2 5  0.668 0.821 
E = 4 0.162 0 . 2 2 0  0 . 3 0 6  0 . 4 3 4  0 . 5 5 9  0 . 6 9 8  0.839 

Droplet, formula (99) 0.155 0 . 2 0 9  0 . 2 9 0  0 .413  0 . 5 3 3  0 . 6 7 2  0.824 

be estimated. For  this, the time t will be eliminated 
from expressions (28) and (91) and further relation 
(89) will be taken into consideration. As a result, the 
expression for the parallelepiped is 

F(8 '~3 1 + l  ] - a -  
x / (93) 

where 

l n m k  "~" 

( 2 n -  1) 2 R22 R32 + (2m - 1) 2 R i2 R32 + (2k - 1) 2R~R~ 
2 2 2 2 2 2 R I R 2 + R , R 3 + R 2 R 3  

By rewriting equation (30) in much the same way 
with the aid of asymptotics (92), the relation for the 
finite cylinder is 

32_~ ~ 1 ( 3 2  1 ) - ' -  
- r f Z - ~ L  L 2 - 2 + 1  (94) n . . , . . ,U . (2m- - l )  rr~-~ a?® 

where 

4 1 2 1 z 2 + n 2 R : ( 2 m -  1) 2 
8,, = 412# 2 +n2R 2 

Table 3 (calculations were performed by L. Yu. 
Yerokhin) presents the results of  computation by 
equations (90), (93) and (94). As previously, a good 
agreement between the approximate and exact 
relations is observed for the mean temperature of  
differently shaped bodies. (It should be noted that, 
instead of  equation (90), the simpler approximate 
equation (99) can be employed.) 

11. UNSTEADY MASS TRANSFER WITHIN A 
DROPLET IN A STOKES FLOW 

Now, consideration is given to the non-stationary 
problem ofconvective mass transfer within a spherical 
droplet of  radius a in the presence of the limiting 
resistance of  the dispersed phase. In terms of  dimen- 
sionless variables, the corresponding problem for the 
distribution of concentration is formulated as fol- 
lows: 

~ + P e  (v" V)~ = A~ (95) 

~ = 0 ,  c f f i0 ;  y = l , ? = l  (96) 

Co -____.~C a U ,~ D t 
c ffi C o - C, ' P e ffi - - f f -  , t f a- T 

where Co is the concentration within the droplet at 
the initial time instant, C, the concentration on the 
interface, U® the non-perturbed velocity of  the inci- 
dent flow, D the diffusion coefficient, Pe the Peclet 
number and v the dimensionless liquid velocity vector 
given, for instance, in refs. [5, 6]. 

At  Pe = 0 the time dependence of the mean con- 
centration x = 1 - ( ? )  is presented by the right-hand 
side of  equation (90), in which .~®---6n-2 
x [exp (n2~) - I ] -~ .  In the other limiting case, when 
Pe--* oo (~: is fixed), the distribution of concentration 
within a droplet is given by the Kronig-Brink equa- 
tion [22], the numerical solution of  which leads to the 
following expression for the mean concentration [6] : 

$ 

x = ~ A, exp(-- , ; . ,0  (97) 
n m l  

where A t -- 0.6831 ; A2 = 0.0981 ; Aa = 0.0813 ; A4 = 
0.0618 ; As = 0.0057; 2t -- 26.844; 22 = 137.91 ; 23 = 
315.66; 24 = 724.98; )-s = 1205.2. 

The asymptotics of  functions (97) for T ---, oo are 



The method of asymptotic analogies in the mass and heat transfer theory 1071 

given by equation (83) at b = 0.6831; 7 = 26.844. 
Substituting these values into equations (86) in view 
of equation (84) gives the asymptotic coordinate 

~ = A l ( e ~ , ' -  1) - I  

= 0.6831 [exp (26.8443)-  1]- ~ (98) 

The substi tution of equation (98) into (90) allows 
the approximate formula for the mean concentrat ion 
within the droplet at large Peclet numbers  to be 
obtained. 

Expression (97) will be rewritten with the aid of 
equation (98) in the following way : 

5 ( A  '~-~*/~' 
~ + I )  . (99) 

The results computed by equation (99) are pre- 
sented in the lower line of  Table 3. It  is seen that the use 
of equation (90) to calculate the mean concentrat ion 
gives an error of about  3%. It is therefore to be 
expected that relations (90) and (99) can be used with 
success for determining the mean concentration 
within the droplet at any intermediate Peclet numbers 
(0 < Pe < oo). 

Conclusions. The specific examples considered in 
the present study show that, for generality, it is expedi- 
ent to write the final theoretical (and experimental) 
results in the asymptotic coordinates of  the type X/Xo 
and x~/xo. Such an approach often makes it possible 
to obtain universal relations for approximate descrip- 
tion of a number  of  qualitatively similar problems and 
processes. 
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LA METHODE DES ANALOGIES ASYMPTOTIQUES DANS LA THEORIE DU 
TRANSFERT DE CHALEUR El" DE MASSE El" DANS LE GENIE CHIMIQUE 

R~sum~--On sugg~re une technique simple pour construire des relations approch~es a large domaine de 
validit~ (la m&ne formule peut &re employ~ pour d~crire une vari~t~ de probl~mes qualitativement 
identiques mais g~om~triquement diff~rents, par la forme de la surface, la configuration de l'~coulement, 
etc.). La technique est bas~e sur la transition entre les variables ordinaires adimensionneUes et ies coor- 
donn~es sp&'iales asymptotiques. L'ilhistration est faite par r~f&ence aux nombreux probl~mes spbzifiques 
du transfert de chaleur et de masse et de l'hydrodynamique physicochimique. Une comparaison des 
relations obtenues avec des cas typiques dont on connait les r~sultats exacts, num~riques, approch~s ou 
asyraptotiques, montre une bonne precision et une grande aptitude de la m~thode. Celle-ci peut aussi &re 
utilis~e avec succ~s dam d'autres domaines des sciences du g~nie chimique, de la m~canique et de la 

physique. 
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DIE METHODE DER "ASYMPTOTISCHEN ANALOGIEN" UND IHRE ANWENDUNG 
IM GEBIET DES W~RME- UND STOFFTRANSPORTS UND DER 

VERFAHRENSTECHNIK 

Zusammenfassung--Es wird einc einfache Methode zur Biidung von N~herungsl6sungen ffir ein weites 
Anwendungsgebiet vorgeschlagen. Hierbei kann eine einzige Gleichung verwendet werden, um eine Gruppe 
yon qualitativ identischen Problemen zu beschreiben, die sich geometrisch, d.h. durch die Gestalt der 
Oberfl~che oder des Str6mungsfeldes, etc., unterscheiden. Die angewandte Technik basiert auf der Trans- 
formation der gew6hnlichen dimensionslosen Variablen in spezielle asymptotische "Koordinaten". Zur 
Veranschaulichung werden zahlreiche spezielle Probleme aus dem Bereich des W.~rme- und Stofftransports 
und der physikalisch-chemischen Hydrodynamik angef'uhrt. Der Vergleich der gewonnenen lkziehunsen 
mit einer Anzahl yon typischen Beispielen, ffir die bereits analytische, numerische und N~herungsl6sungen 
vorliegen, zeigt eine gute Genauigkeit und die Einsatzrn6glichkeiten dieser Methode. Sie kann auch 

erfolgreich in anderen Gebieten der Veffahrenstechnlk, Mechanik oder Physik angewendet werden. 

METO,I~ ACHMFITOTHqECKOITI AHA.HOFHH B TEOPHH MACCO-TEIIJIOI'IEPEHOCA H 
XHMHqECKOI~I TEXHO.rIOFHH 

AioTaum~rlpen.~trae~.n npocxoR cnoco6 nocxpoe~ npx6a~emJ~zx ~mUCaMOCTeL o0aaa~omxx 
ttmpo~ ~amL~OHOM npm~eme~OCTH (o~ a W xe ~op~ay Moxxo HC~Om~O~TS ann om~__~mt 
ueaoro pnaa n,iec-s~exxo cxoaw~x ~% ox~otw4xca reoMexp~ecL~m ~rrOpaMX---~o~ 
nonepxxocrH, crpyrrypoit veqem~ a T. n.). Moron ocnonaa Ha nepexoae or  o6u, mmx 6e3pa3Mepxmx 
nepeMexm,~x z cneumummmM acm~rro~ectmM rooplmeaTaM. YJca3aHHmft no~xon u m ~ c o  anmocr- 
pxpyeTCS Ha zomq~-rm,~x 3a~amlx Teopm~ Macco-~onepeeoca  x @x3HO-XHSm~eczoit r3mponmm- 
MNrw. Hpone~eHHoe conocranaeJme nonyqem.~ ~anxcHMocxeJt c ~ p~OM xaparrepH~x cny,men, 
nn~ zoropux yxe m~emTc~ Heo6xonm~b~e ~ nponepEH TOm~s~e, qHC~XXMe, npx6mcKem~e a acm~n- 
TOTHqeCJm¢ pe3yJ~bTaTt, l lloEa3kflJalOT xopolzlyJO TO'mOCl"b H 60nbtuxe nO3MOXHOCrH MeTO,U~L I'[pe21no- 
I(~HHbI~ ML"F0~[ ¢ y~l(~XOM MO~'~'T HCIIOHb3OBS"FI~N TSJ~X(~ S flpyYHX O~JIR~TNX XHMHq(~I~O~ TeXHOJIOrHH, 

M~XSHHF~ H (~H3HK'H. 


