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Abstract—A simple technique is suggested for constructing approximate relations with wide ranges of
applicability (the same formula can be employed to describe a variety of qualitatively identical problems
which differ geometrically, i.c. in the surface shape, flow pattern, etc.). The technique is based on the
transition from ordinary dimensionless variables to special asymptotic coordinates. The illustration is made
by reference to numerous specific problems in the theories of mass and heat transfer and physicochemical
hydrodynamics. Comparison of the relations obtained with a number of typical cases, for which exact,
numerical, approximate and asymptotic results are already available, shows a good accuracy and great
capabilities of the method. The method can also be used with success in other fields of chemical engineering
science, mechanics and physics.

1. DESCRIPTION OF THE METHOD OF
ASYMPTOTIC ANALOGIES

SupposE there is a certain class of problems which
differ only in their geometric characteristics and
which depend on the dimensionless parameter t
(0 < 1 < o0). It is also assumed that for some specific
(simplest) geometry the dependence of the basic quan-
tity sought, x, on the parameter 7 is known

x = F(1) )

where F is a monotonous function.

Expression (1) will be employed as the basis for
estimating the values of x which will correspond to
the solution of other problems of the class considered.
For this, equation (1) will be transformed in the fol-
lowing fashion.

Let the leading terms in the asymptotic expansions
of the quantity x at small and large values of the
parameter t have the form

fort—0 2)

fort— o0 3)

X=X,

X = Xy
where x4 and x,, depend on 7 in some known manner:
Xe = Y(2). C))

They can be found from an analysis of equation (1).
It will be assumed further that the requirement
@/W # const. is met.
Using equations (1) and (4), two relations can be
written

xo = ¢(1),

X _H) xe ¥
X 0@ x ¢@

®)

By expressing the parameter t from the second
equation and substituting it into the first equality (5),
it is possible to find the explicit form of the function
x in terms of the asymptotics x, and x,,. As follows
from equations (5), for the general case the structure

of this relation is
x X
=% ©

It is clear that in contrast to the original expression
(1), equation (6) is unaffected by the technique of
determining the dimensionless quantity x. Further it
will be assumed that the variation region of each of
the ratios x/x, and x/x, is identical for all the prob-
lems of the class in question. The quantities x/x, and
X/xo will be referred to as asymptotic coordinates.

The asymptotic analogy method is that equation
(6) is used to approximately calculate analogous
characteristics for already rather a wide range of prob-
lems that describe qualitatively identical phenomena
or processes differing only geometrically. For this pur-
pose, having constructed relation (6), with the aid
of equation (1), for some specific (for instance, the
simplest) case, the procedure of calculating the mag-
nitude of x for another problem of the same class is
reduced to the determination of its asymptotics (in
the same limiting cases as in equations (2) and (3))
with their subsequent substitution into equation (6).

It is important to note that the approximate
relations derived by the above method yield the exact
asymptotic result in both the limiting cases for t —» 0
and t - co.

It should also be noted that the same ideas based
on the use of asymptotic coordinates were employed

1057



1058

A. D. PoLyaNIN and V. V. DiL’'MAN

a characteristic dimension of particle and
droplet (radius of spherical particle)

o concentration in flow

C, concentration on phase interface

C, unperturbed concentration in incident

flow

concentration at initial time instant

dimensionless concentration,

(Cao - C)/ Cuo

dimensionless concentration, C/C,

dimensionless concentration,

(Co—C)(Co—C))

diffusion coeflicient

surface chemical reaction rate constant

(W, = K,F, is the surface reaction rate)

volumetric chemical reaction rate

constant

dimensional constant of x-order surface

chemical reaction rate, aK,C%"'/D

k, dimensionless constant of first-order
volumetric chemical reaction rate,
a’k,/D

2/ cylinder length

Pe  Peclet number, aU/D

R cylinder radius

2R,2R,,2R, lengths of parallelepiped
sides

Re  Reynolds number, aU/v

r,0, ¢ spherical coordinate system fixed with
respect to particle

S dimensionless body surface area

0

3 ab S o

&

NOMENCLATURE

Ss body surface area

T dimensionless temperature,
(To—TH/(To~T,)

Te temperature

T, temperature at initial time instant

T, body surface temperature

dimensionless mean bulk temperature,

W/, Tdv

t time

U characteristic flow velocity

U, unperturbed velocity of translational
flow far from particle

14 dimensionless body volume

Ve  body volume

v dimensionless fluid velocity vector

y dimensionless radial coordinate, r/a.

Greek symbols
B ratio of dynamic viscosities of droplet

and surrounding fluid (8 = 0

corresponds to gas bubble)

body surface

Laplace operator

order of surface chemical reaction

kinematic viscosity of fluid

dimensionless coordinate normal to body

surface

T dimensionless time (¢y/a’in heat transfer
problems and ¢D/a? in mass transfer
problems)

% thermal diffusivity.

~ x>

in refs. [1,2] to improve approximate two-parametric
dependent formulae.

A further comparison of the equations obtained
by the asymptotic analogy method with a variety of
specific cases, for which exact, numerical and approxi-
mate results are already available, shows good accu-
racy and great capabilities of the method. This is
due to the fact that the final functional connection
(equation (6)) of the quantity x, which is of interest
to us, with its asymptotic remains the same (more
precisely, varies little) for rather a wide range of ident-
ical problems, and the specific modifications and geo-
metric differences (the shape and type of the interface
and also the flow pattern at a distance from it) of these
problems are rather completely taken into account by
the corresponding asymptotic parameters such as x,
and x. In other words, the range of validity of the
final expression (6) appears to be appreciably wider
than that of the original relation (1). In this sense it
can be said that the formulae of type (6) (as opposed
to the original expression (1)) are more informative.

It should be noted that the values of x4 and x_, can
be obtained both theoretically and experimentally.

In the cases with /¢ = const., the corresponding
two-term asymptotic expansions of x for t—0 or
7— o0 can be taken as the variables x, and x, in
equations (4).

Attention is now turned to the power-law depen-
dence of asymptotics (4) which are most frequently
encountered in the mass and heat transfer theory and
in physicochemical hydrodynamics [2-6)

Xo = AT(1=0), xo=Br"(t1-ox) (7

where 4, B and n, m are certain constants; n # m.

In this case the functions entering into equations
(4) have the form ¢ = A7", Y = Br™. Placing these
formulae into equations (5) yields

x F() x, B

AT x AT

Elimination of the parameter t will give the sought

relation
/(n—m} /(m—n)
ERRTCEN CauPER (o
Xo A\B Xo B Xo
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Equation (6) can be presented in the equivalent
form

X[%x = h(x5/%o)

where h(z) = f(z)/z, whilst equation (8) can be

written as
/(n—m) 1/(m—n)
1=1(£§a F((f_*x_w) ) )
x, B\B x, B x,

It should be noted that, for the power-law form of
the asymptotics x, and x,, the four-parametric set of
the quantities x = at*F(bt®) in the 7—x plane (where
a, b, B > 0;a = 0; Fis the prescribed function) passes
over into the only curve in the x/x,x/x, plane.

The case of the exponential dependence of the
asymptotics x,, on the parameter 1 will be considered
later in Section 10.

Remark. In some cases the original relationship
between x and 1 can be specified in the implicit form

G(x,7) = 0. (10)

Under the assumption that the leading terms of the
expansions of the quantity x for t —» 0 and t — o are
given by equations (4), equation (10) can be rewritten
as follows:

G(x—‘o o), r) =0,

Eliminating the parameter 7 from the second equa-
tion (11) and substituting it into the first equation will
yield the relation between the complexes x/x, and
X./Xo.

For the power-law types of asymptotics (7), the
sought relation has the form

G<A£(dx_°° /(m—n), (ﬁ x_x>l/("l—n)> —o.
xo \B x4 B x,

This equation will be needed later in Section 8.

Now the great capabilities of the asymptotic anal-
ogy method will be demonstrated on the examples
of the problems of mass and heat transfer and
physicochemical hydrodynamics.

e V)

* - e@ MM

(12)

2. THERMAL CONDUCTIVITY OF SOLID
BODIES OF COMPLICATED SHAPE

Consideration will be given to the internal problems
of unsteady heat exchange of differently shaped con-
vex bodies with the surrounding medium. It will be
assumed that at the initial time instant ¢ = 0 the body
temperature is uniform and equal to T,, whilst for
t > 0 the temperature on the body surface I" is main-
tained constant and equal to 7. In terms of dimen-
sionless variables, the temperature distribution within
the body is described by the following equation and
initial and boundary conditions:

5 =AT (13)
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1=0, T=0; yel, T=1
To—Ts Xt r
= == =- 4
T T,—-T,’ T YT, (14)

where T, is the temperature, i the thermal diffusivity,
a the characteristic body dimension, and r the radius
vector of the corresponding coordinate system.

Here, attention will be mostly paid to the inves-
tigation of the mean temperature of the body (T)
determined as

(T)=}Vdev (15)

V=Jdv

is the dimensionless volume of the body.

To construct the approximate time dependence of
the mean body temperature, the asymptotic analogy
method will be employed. It is convenient that as
the original simplest use will be made of the one-
dimensional (with respect to space coordinates) prob-
lem concerning the heat transfer of a sphere of radius
a. The solution of this problem is well known {7]
and leads to the following expression for the mean
temperature :

where

«w

6 1 s 2
(T = I_P Y n—zexp(-—n n’7).

n=1

(16)

The asymptotics of equation (16) for short and long
times have the form

(THo=6n"""J1(t>0), (T)e=1(x—>0) (17

and represent a specific case of equation (7) at
xo={TYpand x, =(T>,where A =61""2 B=1,
n = 1/2, m = 0. Substituting these values into equa-
tion (9) where F = {T'), relation (16) can be rewritten

as
(T 6 =21 7’ (T 2
(Ty. "PEIF°""[‘§3"2(<T>J ]
(18)

In accordance with the asymptotic analogy method,
equation (18) will be used for predicting the mean
temperature of non-spherical bodies. To this end, for
a body of prescribed shape the mean temperature
asymptotics should be first calculated at short and
long time intervals and thereupon substituted into
expression (18).

When t — co, the solution to the problem, equa-
tions (13) and (14), for a finite arbitrarily shaped body
tends to the limiting value (equal to unity) which is
determined by the boundary condition on the body
surface. Setting T = 1 in equation (15), the asymp-
totics for the mean temperature at large values of ©
can be found
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{T)o =1. (19)

Next, consider the initial stage of the process cor-
responding to low values of dimensionless time. Equa-
tion (13) will be integrated over the body volume
V. Allowing for the identity AT = div (grad T), the
change-over will be made on the right-hand side of
the resulting equation obtained from the volumetric
to surface integral via the Ostrogradskiy-Gauss for-
mula. This gives

0 orT
Edev= —J;ggdr

where the coordinate ¢ runs inwards normal to the
body surface.

At small times the temperature varies mostly in a
thin zone adjacent to the body surface. In this region
the derivatives along the body surface can be neglected
as compared with the derivatives along the normal.
Therefore, the temperature distribution for t — 0 is
governed by the following equation with initial and
boundary conditions

oT_2T.
dr &’
where ¢ = 0 corresponds to the body surface.

The solution of problem (21) is expressed in terms
of the complementary error function

T = Erfc (ié/—)

By differentiating this equation with respect to ¢
and setting ¢ = 0, the local heat flux on the body
surface can be found fort - 0

(20)

=0, T=0; (=0, T=1 (21)

2

oT 1

=) =-— 23
(55 NG @)

Substituting equation (23) into equality (20) and
integrating gives

i) 1
alrdv=ms

where S is the dimensionless body surface area.

Now, both sides of equation (24) will be integrated
over 7 from 0 to . In view of the initial condition in
(14), the sought asymptotic expression for the mean
temperature can be obtained with t —» 0

Y T
(THe= 27\/(;)-

Placing equations (19) and (25) into equation (18)
will yield the approximate time dependence of the
mean temperature of an arbitrarily shaped body

n2n2S2
T].

24)

25

6 &1
<T>=“‘?§,F°"P("§7n—

This expression can be rewritten as
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6 =1 n? Syt
<T>— I—P"EIFCXP<—3'II V% (26)
where S, and V, are the dimensional surface area and
volume of the body.
For practical computations, it is expedient to use,
instead of an infinite series, the simpler equation

<T> = (l —e"'27"’)”2+0.6(e‘ I.Sm_e- l.Iw)

S‘xt
vi

o= @7
the maximum difference of which from equation (26)
is less than 2%.

Next, approximate relation (26) will be contrasted
with the known accurate results obtained for heat
transfer of non-spherical bodies.

First, a parallelepiped with the sides 2R,, 2R, and
2R, will be considered. The solution for the cor-
responding three-dimensional problem, equations
(13) and (14), is constructed by separating the vari-
ables. It leads to the following equation for the mean
temperature [7):

8 3
m-1-(3)
x © W 1

xn§| ,,,;l kgl (2"" 1)2(2m-— l)z(Zk— l)z

| 2n-1)2 (@2m-1)?
xexp{——4—|: R + R

2k 1)
+————-——( R ) ]xt}.

Taking into account that the parallelepiped surface
area and volume are determined, respectively, as
S‘ = 8(R|R1+R|R3+R2R3) and V‘ =8R|R1R3
expression (28) can be written in the form

()

X @x el l

"E,E,,;,(2n—1)2(2m—1)2(2k—1)2
(2n—1)2 (2m-1)2 (2/:-1)2
% )P\ &) T\'R,

1 1 (Y
R|+R2+R3

e2)

nl
xexpy—

St
X V%

29

Table 1 (calculations were performed by L. Yu.
Yerokhin) presents the results of comparison between
the approximate (26) and exact (29) mean tem-
peratures of the parallelepiped at six different values
of R,, R,, R,. It is seen that the maximum error
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Table 1. Comparison of the exact and appropriate values of the meati temperature {7 of differently shaped bodies

Dimensionless time, Six!/ Vi 0.05 0.1 0.2 0.3 0.5 1.0 1.5 2.0
Sphere, formula (26) 0.236 0.323 0.438 0.518 0.631 0.795 0.882 0.932
Approximate formula (27) 0.237 0.324 0.437 0.514 0.623 0.782 0.870 0.923
Paralielepiped, formula (29); E; = R/R,

E,=1, E,=025 0.237 0.326 0.443 0.527 0.647 0.821 0.907 0.951
E,=1, E;=05 0.233 0.318 0.429 0.506 0.615 0.774 0.862 0.915
E,=1, E;= 0.232 0.316 0.425 0.499 0.604 0.757 0.843 0.897
E,=1, Ey= 0.232 0.318 0.427 0.503 0.610 0.767 0.854 0.920
E,=1 E;= 0.234 0.320 0.432 0.510 0.620 0.782 0.871 0.952
E,=2, E;= 0.234 0.321 0.435 0.514 0.628 0.794 0.882 0.932
Cylinder, formula (31); £ = R/!

E=025 0.236 0.325 0.440 0.522 0.638 0.807 0.894 0.942
E=05 0.234 0.321 0.434 0.513 0.624 0.787 0.875 0.926
E=1 0.233 0.319 0429 0.506 0.613 0.770 0.857 0.910
E=2 0.234 0.320 0.431 0.509 0.619 0.780 0.868 0.920
E=4 0.237 0.326 0.444 0.528 0.649 0.823 0.909 0.952
of equations (26) and (27) for 0.25 < R;/R, £ 4.0, particle surface I' in the spherical coordinate system

R,/R, = 1is as much as about 5%.

Now consider the heat transfer of a finite cylinder.
Let the cylinder radius be R and the length 2/. The
solution of the problem, equations (13) and (14), leads
in this case to the following expression for the mean
temperature [7]:

32 ko) 0
n? Z Z'#3(2m—1)2

n=1lmm

2
X exp {—- I:% + :Ixt} (30)

where p1, are the roots of the zero kind Bessel function :
Jo(i,) = O (the values of the first 60 roots of yu, can
be found in ref. {8]).

Equation (30) can be rewritten as

32 x 0
(T = l—_i Z Z 2(2m_l)2

T s tm= 1 B

X eXp {—

where S¢ = 27R(R+2!) is the cylinder surface area
and Vs = 2nR? the cylinder volume.

The computational results obtained for different
values of the cylinder characteristic dimensions using
exact (31) and approximate (26) relations are listed in
Table 1. It is seen that the maximum error of equation
(26) for 0.25 < R/l £ 4.0 amounts to about 3.5%.

(Tr=1-

?(2m—~1)?
472

APul+niR*2m—1)? Syt
3 3 31
aR+2)) 7z

3. MASS AND HEAT EXCHANGE OF AN
ARBITRARILY SHAPED PARTICLE WITH A
TRANSLATIONAL STOKES FLOW

Interest will be centred on a solid particle mass
and heat transfer with a laminar translational viscous
incompressible liquid flow. It is assumed that con-
centration far from the particle is constant and equal
to C,, and that complete absorption of the substance
dissolved in the liquid occurs on the interface. Let the

AT 33:6-8

r, 0, @ be prescribed by the relation r = r,(6, ¢) where
r, is the known function of 6 and ¢.

The concentration distribution C in the flow is rep-
resented by the convective mass transfer equation and
the boundary conditions

Pe(v:V)c = Ac (32)
y=y0,9), c=1; y>0,c-0 (33)
where ¢=(C,.—-C)/C,, Pe=alU_/D, =rla,

¥s = r/a, U, is the liquid velocity at a distance from
the particle, D the diffusion coefficient, a the charac-
teristic particle size (which is usually represented by
the radius of the equivalent volume sphere) and Pe the
Peclet number. The distribution of the liquid velocity v
is assumed to be known from the solution of the
corresponding hydrodynamic problem concerning the
flow around a particle.

The basic quantity of practical interest is the mean
Sherwood number which is calculated from

I dc
3 I= Jjaédr S= JJ;dI‘. (34)

For spherical particles it is possible, in lieu of equa-
tions (34), to write

Sh——irfz"sine(ac> dpdb.  (35)
- 4r o Jo 6yy-. @ ’

Now, with the use of the method suggested, the
approximate equation for calculating the Sherwood
number per arbitrarily shaped solid particle in the
translational Stokes flow is derived. This kind of flow
complies with the limiting case Re - 0; Re = aU_/v
is the Reynolds number and v the kinematic viscosity
coefficient.

First the simplest problem of the mass transfer of
a spherical particle will be considered which cor-
responds to the constant value y, =1 in the first
boundary condition (33). (The liquid velocity field is

Sh =
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well known in this case [2-6].) For predicting the
mean Sherwood number per spherical particle, it is
convenient to employ the approximate relation [5]

Sh = 0.5+(0.125+0.243P¢) "> (36)

This equation differs from the available data [5, 6,
9, 10] by about 2% over the entire range of Peclet
numbers.

Now equation (36) will be transformed following
the technique given in Section 1. For this, account will
be taken of the fact that the asymptotics of Sk at small
and large Pe have the form

Shy = 1(Pe—»0); Sh, =0.624Pe"* (Pe - ).
€0

Equations (37) coincide with equations (7) accurate
to the evident translation into the new notations x —
Sh,t—>PeatA=1;B=0624;n=0; m=1/3. By
substituting these values into equation (8), the sought
relation is obtained

Sh = 0.5Sho+(0.125Sh3 +Sh2)"*. (38)

This equation can be used to predict the mean Sher-
wood number per non-spherical particle in the trans-
lational Stokes flow. As the auxiliary quantities Sh,
and Sh,, the leading terms of the mean Sherwood
number asymptotic expansions should be selected at
small and large Peclet numbers, respectively. Some
specific expressions for Shy and Sh,, obtained theo-
retically and experimentally for particles of various
shapes are given in refs. [4, 5]. In the particular case
of an ellipsoid of revolution with the axis running
along the flow the substitution of the corresponding
values of Sh, and Sh,, into equation (38) yields the
empirical equation suggested in ref. [5].

In ref. {10}, the approximate problem of mass ex-
change between an ellipsoidal particle and the trans-
lational Stokes flow was investigated by the finite-
difference numerical method. Two cases were
analysed—when the length of the particle semiaxis
oriented along the flow was five times larger and five
times smaller than that oriented transverse to the flow.
It follows from the results of numerical solution [10]
and of comparative analysis [5] that the maximum
error of equation (38) for an ellipsoidal particle in the
above cases does not exceed 10%.

4. MASS AND HEAT EXCHANGE OF A
SPHERICAL PARTICLE WITH A
TRANSLATIONAL FLOW AT INTERMEDIATE
REYNOLDS NUMBERS

It will be shown that equation (38) can also be
used with success for predicting the mean Sherwood
number per particle at intermediate Reynolds
numbers. (Recall that the original relation (36)
was obtained in the Stokes approximation, i.e. for
Re — 0.) Here the asymptotic Sh,, entering into equa-
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tion (38) is proportional to Pe'/? [4] and depends on
the Reynolds number

Sh,, = o(Re) Pe'. 39)

The value of the parameter ¢ at different Re can be
found by making use of the formula

Sh=0.5+0.527Re**’(1+2Pe)"*  (40)

which was suggested in ref. [5] on the basis of pro-
cessing the results of numerical solution for the prob-
lem on convective mass transfer of a spherical particle
in the translational flow with 1 < Re <200 and
1 € Pe < 2000. In the above range of Reynolds and
Peclet numbers the maximum error of equation (40)
is about 3%.

Equating the right-hand sides of equations (39) and
(40) at Pe = 2000 yields the relation ¢ = o(Re) for
1 € Re < 200 in the form

o (Re) = 0.04+0.664Re*°"". 1)

By substituting asymptotics (39), in view of equa-
tion (41), into equation (38) at Sk, = 1, the approxi-
mate expression for the mean Sherwood number is
obtained which differs from equation (40) for
1 < Re £ 200and 1 < Pe < 2000 at most at Re = 200
and Pe = 2000 by less than 6%. The results of cal-
culations by equations (38) and (40) at Re =1 and
200 are presented in Fig. 1. Emphasis should be placed
upon the fact that relations (38), (39) and (41) ensure
a correct result for the limiting case Pe = 0, whereas
the error of equation (40) at Re = 200 reaches here
30%.

The comparison performed in Sections 3 and 4
clearly reveals that the region of applicability of equa-
tion (38) is much wider than that of the original
relation (36).

5. DIFFUSION TO A SPHERICAL BUBBLE AT
DIFFERENT REYNOLDS NUMBERS

The problem of mass exchange of a spherical bubble
with a laminar translational flow at different Reynolds

Pe

FiG. 1. Sherwood number vs Peclet number for a solid
spherical particle in a translational flow at intermediate
Reynolds numbers.
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numbers was investigated numerically in ref. [11]. The
computational results for the mean Sherwood number
in the limiting cases of small and large Reynolds num-
bers are presented in Fig. 2(a).

Let the equation for the Sherwood number be con-
structed by the asymptotic analogy method. As in the
original relation, use will be made of the expression

Sh=0.6+(0.16+0.21Pe) "2 42)

which approximates well the numerical results of the
solution for Re =~ 0.

At large Peclet numbers, equation (42) yields the
asymptotics

Sh,, = 0.46,/(Pe) (Pe— 0) (43)

which coincides with the analytical result obtained for
the corresponding problem in the diffusional bound-
ary layer approximation [3}. When Pe — 0, equation
(42) gives Shy = 1.

The Peclet number from equation (43) will be ex-
pressed in terms of Sh, and placed into equation
(42), thereby resulting in

Sh=0.6+(0.16+Sh2) 2. (44)

This formula can be derived conventionally by setting
A=1,B=046,n =0, m=1/2 in equations (7) and
taking into consideration that the form of the function
F is dictated by the right-hand side of relation (42).
Next the equality Shy =1 should be used which is
valid for spherical bubbles at any Re.

Equation (44) can already be employed for pre-
dicting the mean Sherwood number per spherical bub-

ot 10° 0 02 0®
Shoo/Sh

FI1G. 2. Mass exchange of a spherical bubble with a trans-

lational flow at small and large Reynolds numbers : (a) Sher-

wood number vs Peclet number; (b) Sherwood number vs

asymptotic coordinate. 0 @ @@, Re > 0[11]; x x x x x,

Re - o[11]; , constructed following formula
(44).

1063

ble at moderate and large Reynolds numbers. The
value of Sh,, corresponding to Pe » 1 depends in this
case on the Reynolds number. In particular, when
Re — o0, it should be set in equation (44) [11] that

Sh, = (2Pe/m)"*. (45)

Figure 2(b) presents the results of comparison of
approximate relation (44) with the numerical data for
the limiting cases Re — 0 and Re — 0. It is evident
that the maximum error amounts to about 6%.

6. UNSTEADY DIFFUSION TO A DROPLET,
BUBBLE AND SOLID PARTICLES IN
TRANSLATIONAL AND SHEAR FLOWS

Attention will be focused on unsteady mass transfer
to the surface of a solid spherical particle (droplet,
bubble) of radius a in a developed flow. It is assumed
that at the initial time instant ¢ = 0 concentration in
the continuous phase is uniform and equal to C,,
whilst when ¢ > 0, a complete absorption of the sub-
stance dissolved in the liquid proceeds on the particle
surface.

In the spherical coordinate system r, 8, ¢ with the
origin fixed at the particle centre, the corresponding
non-stationary problem on distribution of the con-
centration is represented by the convective diffusion
equation with the initial and boundary conditions
which in dimensionless variables have the form

oc

—+Pe(v'V)c=Ac

ot (46)

t=0,c=0;

where ¢ = (C,~C)/C,, Pe=aU/D, y=rfa, 1=
Dtja?, Uis the characteristic flow velocity, D the diffu-
sion coefficient and Pe the Peclet number. The liquid
velocity field vis assumed to be assigned and stationary.

For a spherical bubble the dependence of the mean
Sherwood number on time in an axisymmetric linear
shear Stokes’ flow was obtained in ref. {4] in the
diffusion boundary layer approximation

y=lLc=1; yow,c->0 47)

/2
Sh= I:% coth (3Pe r)] (48)
where Pe = a>E/(2D), E is the shear coefficient.
Following the suggested method, relation (48) can
be rewritten using asymptotic coordinates. To this
end, the leading terms of the Sherwood number
expansions, equation (48), can be found at small and
large dimensionless times

1 12
Shy = (E) (t - 0)
3Pe\/?

Asymptotics (49) coincide with equation (7) at
A=n""2 B= (3Pe/n)"?, n= —1/2, m = 0 accurate

(49
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to the evident translation into the new notation Sh —
x. Substituting these values into formula (9) and tak-
ing into account that the explicit form of the function
F is prescribed by expression (48) gives the sought

relation
Sh Sh2\ ]2
:S,h—w = | coth (m)] .

Formula (50) can also be derived in a different
fashion. For this, the quantities T and Pe from equa-
tions (49) are expressed in terms of the quantities Sh,
and Sh,, thereby yielding © = 1/(n Sh}) and Pe =
n Sh2 /3. By substituting these expressions into equa-
tion (48), relation (50) is obtained.

Now it will be shown that expression (50) can be
used with success for an approximate prediction of
the rate between droplets, particles and bubbles and
various flows at large Peclet numbers.

First it should be noted that at low values of t the
second term on the left-hand side of equation (46) can
be neglected and the Laplacian on the right-hand side
of this equation can be approximately replaced by
0%c/dy*>. The solution of the corresponding ‘shortened’
equation is expressed in terms of the complementary
error function and leads to the asymptotics for the
Sherwood number Sh, = (rt)~"/? which is valid for
the entire class of problems under consideration.
Therefore, instead of equation (50) it is possible to
write [1]

(50)

Sh 2 /2
EE = [coth (7 Sh3,1)]
where Sh,, = Sh,(Pe) is the Sherwood number for
the developed diffusional regime.

Comparison of the approximate formula obtained
by substituting the corresponding stationary value [3]

(51

UL

2Pe 2
Shw-—-'[————] , Pe= D

3n(B+1) (52)

into equation (51) with the results of refs. [12-14]
shows that in the case of unsteady mass exchange of
a spherical droplet with the developed Stokes flow
(U, is the liquid velocity at a distance from the
droplet, § the droplet and the surrounding liquid vis-
cosity ratio) the maximum error of expressions (51)
and (52) is less than 1% (see Fig. 3).

It should be noted that the results of refs. [12-14]
obtained for the mean Sherwood number are given as
a fairly complex integral which cannot be represented
in a simple analytical form such as equation (51).

Placing into equation (51) the quantities [3}

Shy, = 0.624Pe', Pe = aU,/D (53)

results in the approximate formula for predicting the
Sherwood number in the case of unsteady mass trans-
fer to a solid spherical particle in a developed trans-
lational Stokes flow. The maximum difference
between expressions (51), (53) and the approximation

A. D. PoLYANIN and V. V. DiL’'MAN
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Fig. 3. Comparison of approximate formula for the

Sherwood number (51) with the results obtained for a

translational flow around a spherical droplet [12-14] and a
solid particle [5].

[5] of the numerical-analytical results [15] for the
problem of interest comprises less than 2% (Fig. 3).

Comparison with the solution of the three-dimen-
sional non-stationary problem on diffusion to a
spherical droplet in a plane shear flow [16] dem-
onstrates that the error of formula (51) (where
Sh., = 0.615,/(Pe) [4]) does not exceed 1.8%.

Table 2 provides the outcome of comparison of
the results of computation for the mean Sherwood
number made by formula (51) with the available data
for different cases of flow around spherical droplets,
bubbles and solid particles at large Peclet numbers.

It should be marked that expression (50) ensures a
correct asymptotic result at short and long times and
can be used to estimate the unsteady mass transfer
rate for non-spherical particles, droplets and bubbles
when Pe » 1. It will be shown in Section 9 that for-
mula (50) is also good for predicting a wide class
of more complex non-linear problems of the unsteady
diffusion boundary layer.

7. MASS EXCHANGE OF DROPLETS AND
PARTICLES WITH FLOW IN THE PRESENCE OF
VOLUMETRIC CHEMICAL REACTION

Consideration will be given to steady convective
mass exchange of a spherical particle (droplet) of
radius a with an incompressible liquid in the presence
of the first-order volumetric chemical reaction. The
process of the reagent transfer in the continuous phase
is described in terms of dimensionless variables by the
following equation and boundary conditions:

Pe(v-V)e = Aé—k,¢ (54)

(55)

where ¢ = C/C,, k, = a*K,/D, C,is the particle surface
concentration, K, the volumetric chemical reaction
rate constant (the remaining notation was given pre-
viously in Section 6).

For solving the stationary problems on convective

y=1¢é=1; y-50,-0
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Table 2. Maximum error of formula (51) for different flows around spherical particles, droplets and bubbles
Error of
formula
No Type of particles Type of flow Method of solution (51) (%) Reference
1 Droplet, bubble Axisymmetric shear Stokes Analytical, DBLAY 00 {41
flow
2 Droplet, bubble Translational Stokes flow Analytical, DBLA 0.7 [12-14]
3 Droplet, bubble Three-dimensional Stokes Analytical, DBLA 1.8 f16]
flow
4 Bubble Laminar translational flow at Analytical, DBLA 0.7 {13, 14]
large Reynolds numbers
S Bubble Axisymmetric shear flow at Analytical, DBLA 0 The present
large Peclet numbers, ref. [17] study
6 Droplet, bubble Flow induced by electric field Analytical, DBLA 0 [18]
7 Particle Translational flow of ideal Analytical, DBLA 0.7 [13, 14]
(inviscid) liquid
8 Solid particle Translational Stokes flow Interpolation of 1.4 (5]
numerical-analytical
results 15}
9 Solid particle Translational Stokes flow Finite-differential method 4 [6}

(at Pe = 500)

+DBLA, diffusional boundary-layer approximation.

mass exchange of droplets and particles with the liquid
in the presence of the first-order volumetric chemical
reaction it is practical to use the results of solutions for
the corresponding non-stationary problems without
volumetric reaction. In fact, upon applying to equa-
tion (46) and boundary conditions (47) the Laplace~
Carson transformation (with the valid parameter &,)
c=L* =k, I exp(—k,7)cdr (56)
0
the problem with volumetric chemical reaction, equa-
tions (54) and (55), is arrived at.

It follows from equation (56) that the Sherwood
number Sh corresponding to the solution for the prob-
lem with the first-order volumetric reaction, equations
(54) and (55), can be expressed in terms of the auxili-
ary Sherwood number (found by solving the non-
stationary problem (46), (47)) as follows :

Sh=L*Sh.

A useful estimate will be obtained which will be
needed for what follows. Let Sh be the mean Sher-
wood number corresponding to the exact solution of
the auxiliary problem, equations (46) and (47), and
Sh,, the approximate expression for the Sherwood
number with the error equal to ¢, i.e.

|Sh—Sh,,| < &. (57

By applying the Laplace—Carson transformation,
with allowance for relation (57), to the difference
Sh— Sh,,, the following inequality is obtained :

Sh—Sh,, = L*(Sh—Sh,,) <eL*l =¢

where Sh and §I—t.,, are the exact and appropriate
values of the Sherwood number corresponding to the
solution for the non-stationary problem with the first-
order volumetric chemical reaction, equations (54)
and (55). In much the same way it is found that

Sh—Sh,, < ¢. Therefore, the following inequality is
valid :

|Sh—Shy,| <. (58)

The estimate (58) shows that, having obtained a
sufficiently good approximate relation for the auxili-
ary Sherwood number in the non-stationary problem
by the Laplace~Carson transformation, it is possible
to get a satisfactory relation (of the same accuracy) for
the mean Sherwood number in the stationary problem
with the first-order volumetric chemical reaction.

With the aforegoing considered, use will now be
made of the results obtained in Section 6 which treated
the non-stationary diffusion boundary layer
problems. Expression (51) will be employed as the
auxiliary mean Sherwood number.

Applying the Laplace-Carson transformation to
equation (51) gives the approximate solution for a
number of corresponding stationary problems, equa-
tions (54) and (55), with the first-order volumetric
chemical reaction [19]:

Sh k,
—= (D(:) (59
Shy Shi
where the function @ is assigned by the integral
O(x) = xJ exp (—xp)[coth (zp)]">dp. (60)
0

In equation (59) the quantity Sk, corresponds to
the mean Sherwood number in the absence of volu-
metric chemical reaction, i.e. at k, = 0. In forming
expression (59), account was taken of the equality
Sh,, = Shy, in which the quantity

Sh,, = 'lim Sh
complies with the developed diffusional regime in the
non-stationary problem, equations (46) and (47), and
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FiG. 4. Sherwood number vs dimensionless volumetric

chemical reaction rate constant for an axisymmetric shear

flow around a spherical droplet: , formula

¢9;, ————— , formula (61); x x x x x, data of
ref. [20).

gives the mean Sherwood number in problem (54)
and (55) atk, = 0.

Relation (59) could also be derived in a different
way by applying the Laplace—Carson transformation
to equation (48) with the subsequent calculation of
the asymptotics Sk for k, — 0 and k, — oo with the
results obtained in Section 1. It should be taken into
account that for spherical droplets and particles
Shy, = k..

Approximate relation (59) adequately reflects the
structure of the dependence of the Sherwood number
on the complex k,/Sh? at large Peclet numbers (in the
diffusion boundary layer approximation) and pro-
vides a correct asymptotic result for &, = 0 and k, —
0. Relations (59) and (60) are shown in Fig. 4 by a
solid line. The dots correspond to the solution for the
problem of mass exchange of a spherical droplet with
the translational Stokes flow obtained [20].

It is significant to note that equations (59) and (60)
for the axisymmetric shear flow around a spherical
droplet correspond to the exact solution of the
diffusion boundary layer equation. The maximum
error of expression (59) for some other cases of mass
exchange of spherical droplets, bubbles and solid par-
ticles with various flows can be evaluated using the
last but one column of Table 2. In particular, it follows
from Table 2 that the solution for the three-dimen-
sional problem of diffusion to a spherical droplet in a
plane shear flow leads to the relation for the mean
Sherwood number which differs from equations (59)
and (60) by less than 1.8%.

For approximate calculations of the Sherwood
number use can be made of the simple expression

Sh = /k, coth (—‘_Z_&)
Sh

0

(61)

which differs from the more complex equations (59)
and (60) by less than 2%. Relation (61) is depicted in
Fig. 4 by a dashed line.

The results obtained show that relations (59) and

A. D. PoLYanIN and V. V. DiL’MaN

(61) can be used with success to predict approximately
the Sherwood number in the problems concerning
mass exchange of spherical droplets, particles and
bubbles with various flows in the presence of the first-
order volumetric chemical reaction at large Peclet
numbsers. (Recall that the parameter Sk, corresponds
to the Sherwood number in similar more simple prob-
lems without volumetric reaction at k, = 0.) The Sher-
wood number for non-spherical droplets and particles
can be computed by equations (59) and (61) in which
the parameter k, should be replaced by Sh2.

8. MASS EXCHANGE OF PARTICLES AND
DROPLETS WITH A FLOW IN THE
PRESENCE OF A SURFACE CHEMICAL
REACTION

In this section, more complex non-linear problems
of convective mass exchange between solid particles
(droplets) and a laminar flow will be investigated.
Assume that the concentration at a distance from the
particle is constant and equal to C,, and that on the
interface there is chemical reaction proceeding at the
rate W, = K F,(C) where K, is the surface reaction
rate constant, the function F,, which is due to the
reaction kinetics, meet the requirements F,(0) = 0.

The corresponding boundary-value problem on the
concentration distribution in the continuous phase is
formulated as

Pe(v-V)c = Ac (62)

dc
y=1 Fo =k, fi(e) (63)
y—o, ¢c—0. (64)

Here, the dimensionless functions and parameters are
associated with the original dimensional quantities by
the relations

- C.—-C _r Pe = ‘ij
c= C‘m , V= 2’ e = D’
aKFAC.) _ E(©)
k==pc, * MI=Ficy

and the notation described in Section 6 is adopted.
In particular, for the x-order reaction F, = C* and
fi=(=0)

Generally, it is not difficult to verify that the func-
tion f, possesses the properties

L) =0, £(0)=1 (65)

Now, an approximate formula will be constructed
for the mean Sherwood number, with the surface reac-
tion rate being arbitrarily dependent on concen-
tration, taking as the point of departure the most
simple case of a quiescent medium which complies
with Pe = 0 in equation (62).

At Pe = 0 the solution of equation (62) which sat-
isfies the condition of attenuation at infinity, equation
(64), has the form
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(66)

where the unknown constant ¢ is related, according
to equation (35), to the Sherwood number as

q = Sh.

c=gqjy

(67)

Placing expressions (66) and (67) into the boundary
condition on the particle surface, equation (63) yields
the algebraic (transcendental) equation for the Sher-
wood number

Sh = k, f,(Sh). (68)

Allowing for properties of equation (65), the lead-
ing terms of the expansions of Sh will be found from
equation (68) at small and large values of the par-
ameter &,

Shy =k, (k;=0); Sh, =1(k, > ). (69)

After the redesignations Sh— x and &, — 1, equa-
tion (68) can be written as an implicit relation of the
type of formula (10) : G(x, 1) = x—1f,(x) = 0. There-
fore, use can be made of equation (12) in which,
following equations (69), it is to be set that
A=B=n=1,m=0and x be replaced by Sh. As a
result, the following equation is obtained :

Sh Sh
o= 4{5ic)
In the general case of Pe # 0 the treatment of prob-
lem (62)-(64) shows that for an arbitrary flow around
spherical droplets, particles and bubbles the higher-
order term of the Sherwood number expansion is

given by the expression Shy = k, when k, — 0. The
aforesaid allows equation (70) to be rewritten in the

following form:
Sh
Sh = ksﬁ(ﬁ;)

Approximate equation (71) can be used with suc-
cess to predict the mean Sherwood number for an
arbitrary flow around spherical droplets, particles and
bubbles with any dependence of the surface reaction
rate on concentration over the entire range of Peclet
numbers: 0 € Pe < 0.

In equation (71) the quantity Sh,, = Sh, (Pe) cor-
responds to the diffusional regime of reaction (i.e. to
the limiting case k, —» oc) and should be determined
by solving linear auxiliary problem (62) and (64) with
the simplest boundary condition on the interface:
y=landc=1.

It is shown in ref. [4] that equation (71) allows the
finding of three, for the transiational Stokes flow, and
four, for the arbitrary shear flow, first terms of the
Sherwood number asymptotic expansion in small
Peclet numbers for any Kinetics of the surface chemical
reaction.

The adequacy of approximate equation (71) at the
intermediate Peclet numbers Pe = 10, 20, 50 (to these
values there correspond the Reynolds numbers

(70)

(7
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k,/Sh,,
FiG. 5. Sherwood number vs dimensionless second-order
surface chemical reaction rate constant. Curve | is con-
structed in accordance with equation (71). Curves 2-4 cor-
respond to a translational flow around a sphere. a circular
cylinder and a droplet, respectively.

Re =10, 20, 1/2) in the case of a translational flow
around a solid sphere was verified by comparison with
the numerical results obtained for the corresponding
problem for the first-order surface chemical reaction.
It follows from Table 13 in ref. [6] that the error of
equation (71) does not exceed here 1.5%.

At large Peclet numbers for the surface reaction of
the order k = 1/2, 1, 2, the adequacy of equation (71)
was tested within the entire range of k, by comparing
its root with numerical results obtained in solving the
corresponding integral equations for surface con-
centration (derived in the diffusion boundary layer
approximation) in the case of translational Stokes
flow around a sphere, circular cylinder, droplet and
bubble [4]. The results of comparison for the second-
order reaction (x =2) are plotted in Fig. 5 (for
k = 1/2 and 1 equation (71) is more exact than for
k = 2). Curve 1 depicted by a solid line corresponds
to the solution of algebraic equation (71) at
fi(e) = (1—c)% It is seen that the error is observed
when 0.5 < k,/Sh,. < 5.0. It does not exceed 6% for
a solid sphere (Curve 2), 8% for a circular cylinder
(Curve 3) and 12% for a spherical droplet (Curve 4).

It should be noted that in order to calculate the
mean Sherwood number for particles of irregular
shape, a simpler equation (70) is to be used.

9. UNSTEADY MASS TRANSFER BETWEEN
DROPLETS (BUBBLES) AND FLOW WITH AN
ARBITRARY DEPENDENCE OF THE
DIFFUSION COEFFICIENT ON CONCENTRATION

The analysis is carried out of axisymmetric prob-
lems concerning unsteady diffusion to droplets and
bubbles at large Peclet numbers with regard for the
concentrational dependence of the diffusion
coefficient : D = D(C). It is assumed that at the initial
time instant the concentration in the surrounding
liquid is uniform and equal to C,, whereas on the
interface there occurs a complete adsorption of the
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admixture when ¢ > 0. Two situations will be analysed
simultaneously :

(1) any steady flow, an arbitrarily shaped droplet
(bubble),
(2) any unsteady flow, a spherical droplet (bubble).

Use will be made of the &, n, 4 orthogonal coor-
dinate system fixed with respect to the droplet surface
where ¢ is directed normal to the surface and 7 is
running along the surface. Without loss of generality
it is assumed that the quantity £ = 0 corresponds to
the droplet surface and the first component of the
metric tensor is equal to unity at ¢ = 0.

In the diffusion boundary layer approximation the
corresponding non-linear non-stationary problem has
the form [21]

0c Pe[d¥ dc oY oc
E*%(ﬁ%"%aé) #00% 0
t=0,c=0; (=0,c=1; {>w0,c>0 (73)
where ¢ = (C,~C)/Cy, T =tD(C,)/a?, Pe=al/

D(C.), D(c) = D(C)/D(C,), a is the characteristic
droplet (bubble) size, U the characteristic flow velo-
city. Equation (72) also involves the dimensionless
quantities

¥ ={Q(t,m), g=9m

which corresponds to the leading terms of the expan-
sions of the stream function and of the third metric
tensor invariant at a droplet surface when £ —» 0. To
different flows and droplet shapes there correspond
different functions Q and g [4].

The solution to the problem (72)-(74) is sought in
the self-similar form [21]

¢c= c(:/%), o = d(z,m).

Substituting expression (75) into equations (72)-
(74) indicates that the unknown function é = d(z, )
should satisfy the first-order linear partial differential
equation

(74)

(75)

65 06 Pe oQ
— Q = —d=2
Fr Jg 6n \/ on

under the initial condition § =0 at T = 0. The con-
centration profile ¢ = ¢(2) is obtained by solving the
second-order non-linear ordinary’ differential equa-
tion

(76)

z—00,c~0. an

Differentiating equation (75) with respect to ¢
results in the expression for a local diffusional flux on
the droplet surface
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i=-|p0F]. - -%[pe%] o

For the mean Sherwood number corresponding to
the solution of non-linear non-stationary problem
(72)~(74) the designation Sh(D) will be used. Taking
into consideration that the solutions of equations (76)
and (77) are independent, equation (78) will be inte-
grated over the droplet surface. This results in the
equality

Sh(D) = a(D)Sh(1). 79

Here, Sh(1) is the auxiliary Sherwood number cor-
responding to linear problem (72)—(74) at the constant
diffusion coefficient D=1 and a(D) is the ‘non-
linearity coefficient’ defined by the formula

Jr de
a(D) = — ﬁ l:ﬁ(c) a;l_o

)-vshere ¢ = ¢(2) is the solution of equation (77) when
=l,a=1.

It follows from the results of ref. [21] that relation
(79) can be extended to the analogous three-dimen-
sional problem of the unsteady diffusion boundary
layer. It is also suitable for particles immersed in an
inviscid flow (an ideal liquid, a filtrational flow).

Passing in equation (79) to the limit when t — 0 and
7 — o0, the leading terms of the asymptotic expansions
of the Sherwood number will be found. Allowing fur-
ther for the fact that the coefficient « is time-inde-
pendent, two relations are obtained

(80)

Sh(D)
Sho(D)

_ Sh(1)
T She(1)’

Shy (D)
Sho(D)

_ S (1)
0

@1

which are valid for any concentrational dependence
of the diffusion coefficient.

The right-hand sides of equalities (81) do not
involve the function D. Therefore, while for linear
problem (72)~(74) at D = 1 the relationship between
the asymptotics Shy = Sho(1) and Sh, = Sh, (1) is
established in the form of equation (6), for non-linear
problem (72)-(74) a similar formula is valid

SwbD) _ (Sh,x,(D))
Sho(D) ~ * \ Sho(D)

82)

where the function f remains the same for any relation
D = D(c).

The aforegoing means that in the case of axisym-
metric shear Stokes flow around a spherical droplet
expression (50) can be employed to calculate the mean
Sherwood number with an arbitrary concentrational
dependence of the diffusion coefficient. It follows from
the results obtained in Section 6 that equation (50) is
also appropriate for an approximate description of
other non-linear non-stationary problems of mass
exchange of droplets and bubbles with a flow indi-
cated in Table 2 under Nos. 1-7.
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10. DESCRIPTION OF THE METHOD FOR THE
ASYMPTOTICS OF AN EXPONENTIAL
FORM

The situation will now be considered in which the
principal terms of the asymptotic expansions of
relation (1) have the form

xp=at*(t-0), x,=bexp(—yr) (t— ) (83)

where -1 <a<0,y>0.

In relations (1) and (83) it is convenient to convert
from the quantity 7 to the new independent variable
z following the formula

z=—exp(y7r)—1. (84)

Here, initial relation (1) takes on the form

X% = F(z), where F(z) = F(% In(z+ 1)). (85)

Here and hereafter, all the quantities written as
functions of the variable z, equation (84), will be
denoted by an overbar.

In view of the limiting relations

1=0,z291; T 0w0,z-exp(yr)

which follow equation (84), asymptotics (83) will be
presented in the form

Xo=ay*z* (z—-0); f,=bz"" (z—> o). (86)

It is seen that expressions (86) coincide, accurate to
evident redesignations, with the previously considered
equation (7) at A=ay™, B=b, n=a, m= —1.
Taking into consideration the above and using equa-
tion (8), relation (85) will be written with the aid of

asymptotic coordinates (86) as

K v a % 2/(x+ 1)
PXO
fo a b‘)” .fo

x F(.l. in [(bv jg)”w - 1]) 87)
" AVES

Now equation (87) can be employed to approxi-
mately calculate the corresponding values for a variety
of quantitatively analogous problems. First, for each
specific problem the principal terms of the type (83)
expansions are to be determined, next the transition
to a new variable should be made following equation
(84) and lastly the asymptotics should be rewritten
in the form of equation (86) and substituted into
expression (87). (Recall that it is expedient that the
initial function F be obtained, as previously, by solv-
ing one of the simplest problems of the class in ques-
tion.)

In the particular case, when for the entire class of
problems considered the equalitiecs a=1, and a = 0
are satisfied in accordance with %, = 1, equation (87)
simplifies and takes on the form
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o).

To illustrate the foregoing statement, the problems
on mass exchange of differently shaped bodies, equa-
tions (13) and (14), will be tackled once more. In
lieu of the mean temperature in equation (15), the
analogous quantity will be considered

x=1-(T)

(88)

(89)

which tends to unity when t — 0; this corresponds to
the values a = 1, and a = 0 in equations (83).

As before, the heat transfer of a sphere will be
considered. Equations (16) and (89) yield that the
asymptotics of x at large and small times are described
in this case by equations (83) at

a=1l,a=0; b=6n"2%7y=n

Substituting the quantities into equation (88) with
allowance for equations (16) and (89) vyields the
sought relation

621 6 1 u
Fime (R
which can already be used to calculate the mass trans-
fer of non-spherical bodies.

For a parallelepiped, it will be found from relations

(28) and (89) that the principal term of the expansion
of x for ¢ — oo is prescribed by relation (83) in which

b (BY LT LI
=\ "TT\RtTET R/

Therefore, following equations (84) and (86) the
quantity ¥, can be defined as

'—83 nzi+l+ltl—I
=EEPLEA\RTR TR
on

Placing expression (91) into equation (90) gives the
approximate time dependence of the mean tem-
perature of the parallelepiped.

For a finite cylinder, it follows from equations (30}
and (89) that the asymptotics x,, of x at 1t —» o0 is
determined by equality (83) in which

32 I
b—nzuz’ yt-—(F+4—[-2 %1

1

X =

90

With these relations taken into consideration the fol-
lowing equation can be obtained with the aid of
expressions (84) and (86):

- 32 i n? -
x”‘_—_nzﬂf {exp[(i,-+‘72~ xt|—-1p . (92)

Substituting equation (92) into expression (90)
yields the approximate formula for the mean tem-
perature of the finite cylinder.

Now, the accuracy of the constructed relations will



1070

A. D. PoLyaNIN and V. V., DiL’MAN

Table 3. Comparison of the exact and approximate values of the mean temperature (T of differently shaped bodies
(exponential approximation)

Asymptotic coordinate, £, 0.2 03 0.5 1.0 2.0 5.0 20.0
Sphere, formula (90) 0.1st  0.203 0281 0402 0.526 0.670 0.823
Parallelepiped, formula (93); E;= R/R; (i =2, 3)

E,=1, E;=025 0.166 0.225 0312 0441 0.565 0.702 0.842
Ey;=1, E;=05 0.151 0.203 0282 0403 0.526 0.669 0.821
E,=1, Ey= 0.147 0.196 0271 0387 0.509 0.654 0.812
E,=1, E;= 0.151 0202 0279 0398 0.520 0.664 0.818
E,=1, E,=4 0.160 0214 0294 0416 0.538 0.679 0.827
E,=1, Ey=4 0.159 0.214 0297 0421 0.545 0.685 0.831
Cylinder, formula (94) ; E = R/l

E=025 0.163 0.219 0302 0426 0.550 0.689 0.834
E=05 0.154 0206 0286 0407 0.531 0.673 0.824
E=1 0.149  0.199 0275 0.393 0.515 0.660 0.816
E=2 0.151 0.203 0.281 0.402 0.525 0.668 0.821
E=4 0.162 0.220 0306 0.434 0.559 0.698 0.839
Droplet, formula (99) 0.155 0209 0290 0413 0533 0.672 0.824

be estimated. For this, the time ¢ will be eliminated
from expressions (28) and (91) and further relation
(89) will be taken into consideration. As a result, the
expression for the parallelepiped is

. 8 3 x® 0 T 1
x= (?) ngl mglkgl (2n—1)*@2m—1)*(2k-1)*

8V 1 Pk
@] e

where

ﬂnmk =
(2n—1)2R3R}+(2m—1)*R}R} +(2k—1)2R2R’
RiR}+RIR:+R3R}

By rewriting equation (30) in much the same way
with the aid of asymptotics (92), the relation for the
finite cylinder is

i 1 2 1Y
r= _ZE, ,..z.:.uf(2m (n i %, +l> ®49)

4P 4R} 2m—1)?
bom = 4’2 +n%R?

Table 3 (calculations were performed by L. Yu.
Yerokhin) presents the results of computation by
equations (90), (93) and (94). As previously, a good
agreement between the approximate and exact
relations is observed for the mean temperature of
differently shaped bodies. (It should be noted that,
instead of equation (90), the simpler approximate
equation (99) can be employed.)

11. UNSTEADY MASS TRANSFER WITHIN A
DROPLET IN A STOKES FLOW

Now, consideration is given to the non-stationary
problem of convective mass transfer within a spherical
droplet of radius @ in the presence of the limiting
resistance of the dispersed phase. In terms of dimen-
sionless variables, the corresponding problem for the
distribution of concentration is formulated as fol-
lows:

a—c+Pe(v-V)E= Aé

P ©
t=0,c=0; y=1¢=1 (%)
. C-C _ alU, _ D
‘=c-c = Ta

where C, is the concentration within the droplet at
the initial time instant, C, the concentration on the
interface, U, the non-perturbed velocity of the inci-
dent flow, D the diffusion coefficient, Pe the Peclet
number and v the dimensionless liquid velocity vector
given, for instance, in refs. [5, 6].

At Pe = 0 the time dependence of the mean con-
centration x = 1—{¢&) is presented by the right-hand
side of equation (90), in which *%, =6n"?
x [exp (n2t)—1]~". In the other limiting case, when
Pe -+ oo (z is fixed), the distribution of concentration
within a droplet is given by the Kronig-Brink equa-
tion [22], the numerical solution of which leads to the
following expression for the mean concentration [6] :

5
x= 3 A,exp(—7n17)
nw=1
where 4, = 0.6831; 4, =0.0981;4,=0.0813;4, =
0.0618; A, = 0.0057; i, = 26.844;/,=13791;4; =
315.66; 4, = 724.98; is = 1205.2.
The asymptotics of functions (97) for t — oo are

on
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given by equation (83) at b = 0.6831; y = 26.844.
Substituting these values into equations (86) in view
of equation (84) gives the asymptotic coordinate

£ =AM 17!

=0.6831{exp (26.8447) —1]-"'. (98)

The substitution of equation (98) into (90) allows
the approximate formula for the mean concentration
within the droplet at large Peclet numbers to be
obtained.

Expression (97) will be rewritten with the aid of
equation (98) in the following way:

5 A — A, /4,
=Y A,,(—.~' + 1) :
=1

e}

(99)

The results computed by equation (99) are pre-
sented in the lower line of Table 3. Itis seen that the use
of equation (90) to calculate the mean concentration
gives an error of about 3%. It is therefore to be
expected that relations (90) and (99) can be used with
success for determining the mean concentration
within the droplet at any intermediate Peclet numbers
(0 < Pe < w0).

Conclusions. The specific examples considered in
the present study show that, for generality, it is expedi-
ent to write the final theoretical (and experimental)
results in the asymptotic coordinates of the type x/x,
and x_./x,. Such an approach often makes it possible
to obtain universal relations for approximate descrip-
tion of a number of qualitatively similar problems and
processes.
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LA METHODE DES ANALOGIES ASYMPTOTIQUES DANS LA THEORIE DU
TRANSFERT DE CHALEUR ET DE MASSE ET DANS LE GENIE CHIMIQUE

Résumé—On suggére une technique simple pour construire des relations approchées a large domaine de
validité (la méme formule peut étre employée pour décrire une variété de problémes qualitativement
identiques mais géométriquement différents, par la forme de la surface, la configuration de I’écoulement,
etc.). La technique est basée sur la transition entre les variables ordinaires adimensionnelles et les coor-
données spéciales asymptotiques. L'illustration est faite par référence aux nombreux problémes spécifiques
du transfert de chaleur et de masse et de I'hydrodynamique physicochimique. Une comparaison des
relations obtenues avec des cas typiques dont on connait les résultats exacts, numériques, approchés ou
asymptotiques, montre une bonne précision et une grande aptitude de la méthode. Celle-ci peut aussi &tre
utilisée avec succés dans d’autres domaines des sciences du génie chimique, de la mécanique et de la
physique.
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DIE METHODE DER “ASYMPTOTISCHEN ANALOGIEN" UND IHRE ANWENDUNG
IM GEBIET DES WARME- UND STOFFTRANSPORTS UND DER
VERFAHRENSTECHNIK

Zusammenfassung—Es wird eine einfache Methode zur Bildung von Naherungslosungen fir ein weites
Anwendungsgebiet vorgeschlagen. Hierbei kann eine einzige Gleichung verwendet werden, um eine Gruppe
von qualitativ identischen Problemen zu beschreiben, die sich geometrisch, d.h. durch die Gestait der
Oberfliche oder des Stromungsfeldes, etc., unterscheiden. Die angewandte Technik basiert auf der Trans-
formation der gewShnlichen dimensionslosen Variablen in spezielle asymptotische “Koordinaten™. Zur
Veranschaulichung werden zahlreiche spezielle Probleme aus dem Bereich des Wirme- und Stofftransports
und der physikalisch-chemischen Hydrodynamik angefiihrt. Der Vergleich der gewonnenen Beziehungen
mit einer Anzahl von typischen Beispielen, fiir die bereits analytische, numerische und Naherungslésungen
vorliegen, zeigt eine gute Genauigkeit und die Einsatzmoglichkeiten dieser Methode. Sie kann auch
erfolgreich in anderen Gebieten der Verfahrenstechnik, Mechanik oder Physik angewendet werden.

METOR ACUMINITOTUYECKOH AHAJIOTHHM B TEOPUU MACCO-TEIUIOINEPEHOCA H
XUMHUYECKON TEXHOJIOrTHH

Amsoraums—TIpennaraercs npoctTolt cnoco6 nocrpoeHnus mpUGIIKCHHBIX 3aBHCHMOCTeH, 061anal0UHX
IUMPOXHM JHANA30HOM MPHMCHHMOCTH (OAHY H Ty X¢ GOpMYJy MOXHO HCHONL30OBATH RJIN OMHCAHHN
HEOTO pAa KaYeCTBEHHO CXOOHBIX 3a4ad, OTAMYAIOUIMXCA reoMeTpmieckumu (axtopamn—aodopmoit
TIOBEPXHOCTH, CTPYKTYPO#l TeueHHs H T. n.). MeToa OCHOBaH Ha mepexone oT oObHMIX GeapamepHmX
TEPEMEHHBIX K CHICUHANILHAM aCHMITOTHYECKHM KOOPAKMHATaM. YKa3aHHLI MOAXOR LIMPOKO HILTIOCT-
PHpPYETCA Ha KOHKPCTHLIX 3a7a%aX TCOPHH MacCO-TEIUIONCPeHOCa B (u3uxo-xumudeckolf rrapoanHa-
muxi, [IposeneHHOe CONOCTaBNEHHE NOMYICHHDIX 3aBHCHMOCTEH C 1Le/ILM PAAOM XapaxkTEePHLIX ClIysaes,
JUIA KOTOPHIX yX€ HMCIOTCA HeOGXOmMMBIE JUIS IPOBEPKH TOUHMBIC, THCIICHHbIC, NPHONHXCHHBC B aCHMI-
TOTHYECKHE Pe3yJIbTATH M0KA3LIBAIOT XOPOIIYIO TOYHOCTE H Gonbiime Bo3mMoxHOCTH MeTona. [Tpenso-
ACHHBIl METOM C YCIIEXOM MOXET HCTOMH30BATHCA TAKke B IAPYIHX 06/acTaX XHMHYeCKOit TEXHONOTHH,
MeXaHHKH H QHIUKE.



